压电陶瓷测量原理剖析_第1页
压电陶瓷测量原理剖析_第2页
压电陶瓷测量原理剖析_第3页
压电陶瓷测量原理剖析_第4页
压电陶瓷测量原理剖析_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、压电陶瓷及其测量原理近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。(一)压电陶瓷的主要性能及参数(1)压电效应与压电陶瓷在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时, 则将产生与电场强度成比例的变形或机

2、械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。 晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。 在声波测井仪器中, 发射探头利用的是正压电效应,接收探头利用的是逆压电效应。(2)压电陶瓷的主要参数1、介质损耗介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图1所示,1 C为同相分量,Ir为异相分量,lc与总电流I的夹角为:,其正切值为其中3为交变电场的角频率,R为

3、损耗电阻,C为介质电容。图1交流电路中电压-电流矢量图(有损耗时)2、机械品质因数机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大, 能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数Qm的定义为:谐振时振子储存的机械能Qm =谐振时振子每周所损失的机械能 2 n机械品质因数可根据等效电路计算而得Qm = sRiCi式中R1为等效电阻(Q), -s为串联谐振角频率(Hz), Ci为振子谐振时的等效电容(F),Li为振子谐振时的等效电感。Qm与其它参数之间的关系将在后续详细推导。不同的压电器件对压电

4、陶瓷材料的Qm值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的Qm值要高。3、压电常数压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 的应力成比例,对于压力和张力来说,其符号是相反的,电位移D (单位面积的电荷)和应力二 的关系表达式为: D = Q二drA式中Q为产生的电荷(C), A为电极的面积(m2), d为压电应变常数(C/N )。在 逆压电效应中,施加电场E时将成比例地产生应变 S,所产生的应变 S是膨胀还是收缩,取决于样品的极化方向。S=dED S两式中的压电应变常数 d在数值上是相同的,即 d =a E另一

5、个常用的压电常数是压电电压常数g,它表示应力与所产生的电场的关系,或应变与所引起的电位移的关系。常数g与d之间有如下关系:g式中:为介电系数。在声波测井仪器中, 压电换能器希望具有较高的压电应变常数和压 电电压常数,以便能发射较大能量的声波并且具有较高的接受灵敏度。4、机电耦合系数当用机械能加压或者充电的方法把能量加到压电材料上时,由于压电效应和逆压电效应,机械能(或电能)中的一部分要转换成电能(或机械能)。这种转换的强弱用机电耦合系数k来表示,它是一个量纲为一的量。机电耦合系数是综合反映压电材料性能的参数, 它表示压电材料的机械能和电能的耦合效应。机电耦合系数的定义为:k2=电能转变为机械能

6、或者k2=机械能转变为电能输入电能输入机械能机电耦合系数不但与材料参数有关,还与具体压电材料的工作方式有关。对于压电陶瓷来说,它的大小还与极化程度相关。它只是反映机、电两类能量通过压电效应耦合的强弱, 并不代表两类能量之间的转换效率。压电材料的耦合系数在不同的场合有不同的要求,当制作换能器时,希望机电耦合系数越大越好。(二)压电换能器的等效电路压电换能器的等效电路表示法,是利用电学网络术语表示压电陶瓷的机械振动特性,即把某些力学量模拟为电学量的方法。把压电换能器用等效电路来表示,有很多优点:其一, 可以把力学上复杂的振动问题有效地进行简化;其二,为了得到换能器的各个参数,从而定量地分析或筛选换

7、能器;其三,实际应用的需要,因为在实际的应用当中, 压电换能器也是接入到具体的电子线路中的,得到压电换能器的等效电路能够更好地对其外围电路进行匹配 设计。由此可见,得到压电换能器的等效电路是十分必要的。2.3压电换能器的谐振特性将压电换能器按照图2-2所示线路连接。当改变信号频率时,可以发现,通过压电陶瓷换能器的电流也随着发生变化,其变化规律如图2-3( a)所示。从图2-3( a)可以看出,当信号为某一频率 fm时,通过压电陶瓷换能器的电流出现最大值Imax ;而当信号变到另频率fn时,传输电流出现最小值Imin。由流经它的电流随频率的变化可以看出,压电陶瓷2-3 ( b)所示。换能器的阻抗

8、是随频率的变化而变化的,其变化规律同电流相反,如图AC图2-4所示。图2-2压电陶瓷换能器谐振特性接线示意图图2-3压电陶瓷换能器电流、阻抗同频率的关系曲线(a)电流-频率关系曲线(b)阻抗-频率关系曲线从图中可以看出,当信号频率为fm时,通过压电陶瓷换能器的电流最大,即其等效阻抗最小,导纳最大;当信号频率为fn时,通过压电陶瓷换能器的电流最小,即其等效阻抗最大,导纳最小。因此把 fm称为最大导纳频率或最小阻抗频率;而把fn称为最小导纳频率或最大阻抗频率。而当信号频率继续增大时,还会出现一系列的电流的极大值和极小值,如图2-4 压电陶瓷换能器电流随频率变化示意图(多谐振模式)224压电换能器的

9、等效电路根据交流电路相关知识,对于图2-5所示好的LC电路来说,其阻抗 Z也随着频率的变化而变化。在图2-2所示的线路中,用 LC电路代替压电陶瓷换能器,可以发现,在压电陶瓷换能器的谐振频率处,只要选择合适的Li、Ci、Ri和Co,通过LC电路的电流和LC电路的阻抗的绝对值随频率的变化曲线,分别同图2-1中的(3和(c)的关系曲线非常相似。也就是说,在串联谐振频率附近,压电陶瓷换能器的阻抗特性和谐振特性同LC电路的阻抗特性和频率特性非常相似。因此,利用机电类比的方法, 可以用一个 LC电路来表示压电陶瓷换能器的参数和特性,这个LC电路即为压电陶瓷换能器的等效电路。Li Ci Ri1_IaII图

10、2-5 LC电路对压电陶瓷换能器来说,在任何串联谐振频率附近,其电行为可以用图 2-3所示的LC电路来表示。在压电陶瓷换能器的串联谐振频率附近,如果值存在一种振动模式,即没有其它寄生响应,则在串联谐振频率附近很窄的频率范围内,可以认为压电陶瓷换能器的等效参数R、Ci、Ri和Co与频率无关。在实际中通过选择合适的尺寸进行加工处理,是可以将 所需要的振动模式同其他模式充分隔离开来的。另外,考虑到在实际中,在通电之后,压电陶瓷换能器必然会存在能量的损耗,这一能量损耗可用一个并联电阻R,来等效。所以其最终等效电路图如图2-6所示。LiClRiCh4R-iCD图2-6压电陶瓷换能器等效电路图图中串联支路

11、中的Li称为压电陶瓷换能器的动态电感,Ci称为动态电容,R称为动态电阻。这三个参数用来表征压电陶瓷换能器在工作(加电源激励产生振动)的情况下,振动部分所受到的力阻抗和介质对振动的反作用的强弱。并联电容 Co又称静态电容,表征压电陶瓷换能器在未加激励的情况下等效为一个纯电容,它的值的大小与换能器的形状有关。 并联电阻 Ro又称静态电阻,表征换能器的电损耗的大小。2.2.5压电换能器的导纳特性根据已得到的压电换能器的等效电路图, 来进一步分析其导纳特性。 为了简化推导,先 假定压电陶瓷换能器没有电损耗, 即Ro=O,此时其等效电路即为一个 LC电路,如图2-5 所示。则 丫二丫0(2-1)式中:Y

12、为换能器的总的导纳值,丫0 = jB。= j%为并联支路的导纳值,丫 = G = jB1 为串联支路的导纳值。先对串联支路进行分析。丫)二 jB0 = j 0Ri1-j( L )C1-得到:R j L j C1RR12 (22 1R (L )C1一(J -十)B1C1 -2 1 2若令R1( L12 C1肃( Lr2)2 二 x 贝y x R:=(丄1 一 士)。由式(2-2)可得: G(2-2)Ri 2Gl2 2 Gi22GlG1212212所以,B1 G1 一巨=两边同时加上(2R),可得(G2r) b1 =(2R)(2-3)1 1 若以电导为横坐标, 电纳为纵坐标,则式(2-3)表示一个

13、以C,0)为圆心,* 为2 R2 R半径的圆,也即是我们所说的导纳圆。如图2-7中虚线所示jB4fi图2-7 导纳圆图对于串联支路进行分析,根据串联谐振频率的定义,令B =0,则由式(2-3)可得到G=o或 G =尺。由于实际的压电陶瓷换能器的动态电阻R0不可能为零,根据式(2-2)1中G1的表达式可以知道,只有 G满足串联谐振的条件。即:L10,所以1 C1可以得到串联支路的谐振频率(又称机械共振频率):S(2-4)斗 L1C1接着考虑加入静态电容后的情况。由式(2-1)可知,考虑静态电容后换能器的导纳相当于在串联支路的电纳(虚部)加上丫0。鉴于一般情况下,压电陶瓷换能器的机械品质因数都较大

14、,也即在串联谐振频率S附近,丫0二j C0的值随频率的变化很小,可以近似认为是一个常数。因此,只需将串联支路所得到的导纳圆的纵坐标向上平移一个常数,而横坐标保持不变即可得到加入静态电容后换能器的导纳关系图,如图2-7中点划线所示。若再考虑到换能器的静态电阻并不为零,则实际中的导纳圆不可能与纵轴相切,而是向横轴的正向平移一定的量(平移距离的大小取决于静态电阻的阻值),如图2-7中实线圆所示对导纳圆图进行简要的分析可知:当f :: fs即 . :- .S时,电纳值大于零,当 f . fs即 s时,电纳值小于零。所以,随着频率的增加,导纳圆是沿顺时针方向变化的。另外,在串联谐振频率的附近, 还存在着

15、两个频率点使得换能器总的电纳为零,此时电源信号经过换能器之后只有幅值的改变,而没有相位的变化,也即电压和电流信号同相位。这两个频率 中,值较小的那个频率 fr称为谐振频率,较大 fa的称为反谐振频率。另外还存在使得换 能器的导纳值取得最大的频率fm,导纳值最小的频率fn。连接原点和串联谐振频率点,与导纳圆的交点处的频率 fp称为并联谐振频率。另外,需要特别指出的是,上述讨论是在一个振动模态谐振频率 ,s附近较小的频率变 化范围内进行的,并且只有在导纳圆的直径远大于这个频率范围内Co的变化时才是正确的,否则换能器的导纳曲线将变得十分复杂,具有蔓叶曲线的特征。根据以上导纳圆图的推导过程, 下面介绍

16、一下压电陶瓷换能器等效电路中各个参数和导 纳圆图的关系,并给出各自的计算公式。在换能器的导纳圆图中作平行于纵轴的直径,交导纳圆于两点,分别记作f1、f2。在f1点处,串联支路的动态电导和电纳值相等,即G = Bi。由式(2-2)可得:-(山-十)iCiRi2(丄1 -土)1C1十)2-1C1(2-5)结合式(2-5)和式(2-6),可得:在f2点处,串联支路的动态电导和电纳值相等,但符号相反,即G=-Bi。由式(2-2)Ri可得:2 ,RiC2L1i2 Li - 2Cii 、2(2-6)2C1RiLl八1(2-7)再由式(2-4)可得:1C1 _ 2s(2-8)1 机械品质因数:Qm二.o s

17、C R1RR1 L C1(2-9)结合式(2-7 )和(2-8)可得:Qm =2s1式(2-5)和式(2-6)消去R1得到:-,.s2=L1C1所以:Qm( 2-10)f2 - f1动态电阻的值可以通过导纳圆的直径求得:R。=1 D(2-11)静态电容 Co的值也可由导纳圆偏离横轴的距离来确定:C0-yo二(2-12)式中yo为圆心的纵坐标。静态电阻Ro的值可由导纳圆偏离纵轴的距离(或圆心的横坐标)来确定:(2-13)Xo2R1式中Xo为圆心的横坐标。至此,我们已得到压电陶瓷换能器等效电路中所有参数的计算公式。2.3测量原理在上一节中,得到的压电陶瓷换能器等效电路参数的计算公式都是基于导纳圆的

18、,也即是基于各个频率下的电导和电纳值的,因此我们需要得到每个频率点的导纳值。为此采用图 2-8所示的测量原理图进行测量。压电陶瓷图2-8压电陶瓷换能器测量原理示意图图2-8中,AC为频率可控的交流信号源,R表示源内阻,Rm称为精密电阻,U a为加在压电陶瓷换能器山的电压信号Ub为经过换能器之后的电压信号。根据前面章节所介绍的压电陶瓷的导纳特性可以知道,在经过换能器之后的电压信号幅度和相位的变化。不失一般性,在这里设定:UUAme厂,Ub 二UBmeH(2-14)U B相对于U A会有一个其中:UAm,UBm分别表示两路信号的幅值,为信号的角频率,为信号的初始相位,d为两路信号的相位差。按照习惯

19、表达,先求压电陶瓷换能器的阻抗,再取倒数得到导纳。Ua -UbUb/Rm将式(2-14)代入得U AmeU BmejjU BmeU A= Rm(UAme j-1)U Bm=Rm(仏 cos丁 _1) _ j 仏 sin 丁 = R jXUBmUBm对应得到:R 二 Rm(詈 cos一 1),XRmsin = U BmU Bm再由导纳和阻抗的关系可得1 1YG jBZ R jX(2-15)即:(2-16)G = B =R2 + X 2R2 + X 2由以上推导可以看出,换能器的导纳和阻抗值仅与加在其两端的电压信号的幅值比和相 位差有关,因此只需要得到两路信号的幅值和相位信息即可得到换能器等效电路

20、的各个参 数。而实际中,只需要对两路信号进行采样,再通过对采样所得数据进行处理便可得到幅值和相位信息。2.4正弦信号的测量方法根据上一节介绍的测量原理可知,要得到压电换能器在测试频率下的电导和电纳值,就需要测得其两端正弦信号的幅值比和相位差。但是实际中,硬件电路实现的仅是对两路信号的A/D转换采集,也即是得到的是两路正弦信号的一系列的离散的点。在这一节中,将介 绍从这些采集到的离散的点计算其幅值和相位的方法。2.4.1数字相关法随着微处理器和大规模集成电路的迅速发展,在测试系统中,越来越多的传统的测量方法被数字化测量方法所取代。近年来,由于相关函数法具有提高测试精度,减少或简化硬件设计,能够充

21、分利用测试系统中的数据采集系统和微型计算机,提高测试系统的可靠性和可维护性的诸多优点,使得相关技术原理在相位差的测量及数字信号处理中得到了广泛应用, 并展现出良好的应用前景1、相关函数法原理相关函数法利用两同频正弦信号的延时为零时的互相关函数值与其相位差的余弦值成 正比的原理获得相位差。设两路被测信号为:x(t)二 Asin(2ft) Nx(t),y(t)二 Bsin(2;ft) Ny(t)(2-17)其中:A、B分别表示两路信号的幅值,f表示信号的频率,Nx(t)、N y (t)分别表x(t)和y(t)是相关的,示两路信号的干扰噪声信号,表示两路信号的相位差。显然,信号 则两路信号的互相关函

22、数为:1 TRxy(.0x(t)y(tJdtT ( 2-18) 1 TRxy()二” 0Asin(2ft) Nx(t) Bsin(2二f(t ) J Ny(t)dt1式中T为信号的周期,即T =-当.=0时,有1 TRxy(O)=Asin(2?ift) +Nx(t) Bsin(2irft +护)+ Ny(t)dt由于噪声信号之间不相关,噪声和信号之间也不相关,将上式进一步展开得:1 TRxyAB sin(2:ft)sin(2二ft)dtTo ABsin(2二ft)sin( 2二ft )cosW;COS(2二ft)sin dt1 J ABsin(2二ft)sindfUcos dtrtABcos

23、:所以,可以得到相位差的计算公式:= arccos(2Rxy(0)AB(2-19)而信号幅值的大小可由信号的自相关函数求得Rx()2x(t)x(t)丄入心沖(2 .)dtT nT(2-20)T =0时,有1Rx(0)二丁1 TA2-2r A2sin2(2 :ft)dt :所以可得信号幅值的计算公式:A = 2R( (0)B = .2Ry(0)(2-21)将上式代入式(2-19),可得相位差计算公式的另一种表达式: =arccos( Rxy(0) =) jRx(0)Ry(0)(2-22)而在实际中,是没有完整精确的信号的表达式的,有的是对信号的模数转换所得到的离散的数据,离散序列的自相关和互相关

24、的计算公式如下:1 2Rxy(O)= x(i)y(i)n 71心2Rx(O)x(i)(2-23)n i =o1 n 2Ry(0) = y(i)2n y式中:n表示采样个数,i表示第i个采样点,x(i)、y(i)分别表示两路信号的第i个点的转换得到数值。由式(2-23)分别求出两路信号的自相关和互相关函数值之后,再由式(2-21)和式(2-22)即可得到两路信号各自的幅值和它们之间的相位差。但是,需要指出的是,由数字相关法求得的相位差,并不能区分是超前还是滞后,这就需要采用其他方法来确定相位差符号的正负号。根据前面测量原理中的介绍,由式(2-15)和式(2-16)可知,压电陶瓷换能器的电导值仅取

25、决于两路信号相位差的余弦值,而电纳的值是在电导值取得最大的时候发生变号。由此,可以先求得电导的值, 再通过循环找其最大值,并从使电导取得最大值时的相位差开始,把相位差变号,得到新的相位差序列,再由新的相位差序列求电纳的值即可。图2-9表示的为采用数字相关法对一号压电换能器测量数据的处理结果,其中(a)表示的是导纳圆图,(b)表示的是电导和电纳值随测试频率的变化曲线。(a)(b)图2-9数字相关法处理结果2、相关函数法的特点及误差分析通过上面对相关函数法测量原理的理论推导过程可以看出,相关函数法测量信号的幅值和相位差与信号的频率无关。也即是说相关函数法不受频率的影响,可以用来测量未知频率的信号的

26、相位差。同时,相关函数法测量原理的推导都是基于正弦函数的,因此,它只能用于测量正弦或余弦信号,并不能测量一般的周期信号。由于噪声干扰信号和原信号并不相关,所以相关函数法能够有效的抑制噪声干扰。但是,如果在系统中存在相关性较强的干扰信号,并且信噪比又比较低的情况下,相关函数法测量误差就会比较大。由相关函数法离散序列的最终计算公式可以看出,其计算结果与采样的点数有关,也即是说测量误差的大小与采样点数是相关的,采样点数越大,计算结果越接近真实值,测量误差也就越小。综合以上对相关函数法的特点的分析,可知相关函数法对于采样转换信号中的直流偏移和噪声等干扰具有很强的抑制能力,它的误差主要是因为采用有限长度

27、的样本代替了高斯白噪声和均匀分布的 A/D量化误差,使得被检正弦信号与噪声信号并非完全不相关。所以, 相关函数法的测量误差与A/D转换的位数、信号的信噪比和采集点数有关。2.4.2快速离散傅里叶变换法现代信号分析采用数字化方式实现,其核心是离散傅立叶变换,它完成了从时域到频域的转换,不仅可以实现线性谱分析,而且还是均方谱分析的关键。离散傅立叶变换(DFT)实现了信号首次在频域表示的离散化,使得频域也能够用计算机进行处理,但由于用于实际时计算量太大而使应用受到限制。直到1965年由Cooly和Tukey建立了一种快速傅立叶变换一一FFT时,DFT的应用才成为现实1、FFT获取正弦波幅值和相位的原

28、理设采集正弦信号得到的离散序列为x(n), n=1,2,KN。则该序列的离散傅里叶变换为:N 严nX(k)二 DFTx(n) = x(n)e Nn=0N二、x(n )cos(n =0n) =ReX(k) TmX(k)k =0,1,2,N -1(2-24)则其初始相位为:A ( ,ReX(k)lf。卄-arctan(), k - 1ImX(k)fs其中:fs是信号的采样频率,N是采样长度。在对时域离散序列进行傅立叶变换之后,可以得到其离散的幅度谱和相位谱,在幅度谱和相位谱中找到对应时域波形的频率的谱线就可以得到时域的正弦波形的幅值和相位信息。图2-10所示的是采用快速离散傅里叶变换法对采集到的数

29、据处理的结果。100246旦导64 3 21od- WE矣 3248 6 4 2(a)(b)图2-10快速离散傅里叶变换法处理结果2、FFT的特点及误差分析通过傅里叶变换可以只提取基波参数,因此谐波的存在并不影响基波成分,所以谐波的存在对应用这种方法测量相位差几乎没有影响;对于噪声干扰,只有当高斯白噪声接近基波的频率分量时才会影响到基波的相位,所以应用FFT法测量相位差也能有效地抑制高斯白噪声干扰。但是,实际上信号是连续的无限长的序列,用FFT对其进行谱分析时,必须截短形成有限长序列,再进行周期延拓,这样就不可避免的造成信号频谱的泄漏,由此便产生了相位差测量误差。误差现象主要是:混叠现象、栅栏

30、效应和截断效应。要想减小相位差测 量误差,就必须提高谱分辨率。实际中可通过提高采样频率或者增加采样数据长度来提高谱 分辨率,进而达到减小相位差测量误差的目的。2.4.3正弦曲线参数拟合法设被测的正弦信号为:f(t)=AgSi n(2ft J D(2-25)其中:f表示信号频率,Ao表示被测信号幅值,表示被测信号的初始相位角,D表示被测信号的直流分量。由于被测信号的频率为已知的,故只需对测得的数据进行三参数的正弦曲线拟合,即可得到被测信号的幅值和相位信息。为此,进一步将上式展开可得:(2-26)A、B的求取。f 二 Asin(2 ft) Bcos(2二ft) D其中:A 二 Acos :,B 二

31、 AqSin :从而将被测信号的幅值和初始相角转化为对参数其基本思想就是寻找合适的A、B和D的值,使得其测量残差的平方和取得最小。1设每个频率下测量的时间序列为ti,(i =1,2,3. n) , n为测量数据的个数,fs频率,fi为每个点的测量值。则测量残差的表达式为:n2;-f (t) 一 As in (2 二 fti) 一 Bcos(2 二 fti) 一 D(2-27)i 4要使得上式取得最小值,可对其参数求偏导,并令其为零。即:s为采样cs dcA cAn吃f(i)Asin(2对tj - Bcos(2jtfti)-D2二 0汩n堆f(i)_Asin(2兀fti) - Bcos(2fti

32、)i=1D=0(2-28):- : n 2 “f (i) _Asin(2计tj -Bcos(2 :fti) -D2*0;D;D | i 4进一步化简得到:nnZ si n(2fti)As in (2 兀為)+Bcos(2 兀 ftj+D=瓦 sin (2 兀 ftjf(i)i=0i =0nn送 cos(2 兀ftjAsi n(2 兀 ftJ+Bcos(2 兀 ftJ + D=瓦 cos(2 兀 ft:) f (i)(2-29)i=0i=0nn送Asin(2兀fti) + Bcos(2兀ftj+D=瓦 f (i)J=0i=0对于式(2-29),构造如下三个矩阵:sin 2:fti 屮丁 = |c

33、os2f1sin 2 二ft2cos 2 ft 21sin 2 ftnAcos2Iftn ,X = B ,F =1小f1(t2)1(tn)式(2-29)可写成如下矩阵形式:狄=Tf上式中X的解为:X 二(2-30)则被测信号幅值的计算公式为:初始相角的计算公式为:A _0亠, A : 0(2-32)至此,得到了被测信号的幅值和相位信息。采用同样的方法对第二路信号的采样数据进行处理,即可得到第二路信号的幅值和相位信息,从而求出两路信号的幅值比和相位差,进步便可得到每个频率下换能器的电导和电纳值。图2-11为参数拟合法的处理结果。 *犬 +:9 -i妊”i;.百.&o O4 3 2 15 1 ao

34、.o 0 qS23.43.63.S频車出HzB- 6 4 20.&0.4图2-11正弦曲线参数拟合法处理结果2.5导纳圆的带约束最小二乘曲线拟合通过以上章节的介绍, 我们已经得到了各个测试频率下压电换能器的电导和电纳值,绘制出了导纳圆图,但这还是不够的。由压电换能器等效电路的各个参数的计算公式可以看出, 我们还需要得到导纳圆的圆心和半径的值。为此,就需要对所得到的离散点进行圆曲线拟合。拟合圆的方法有很多种,常用的有平均值法、加权平均法和最小二乘法。平均值法的思想是分别计算各个离散点的横、纵坐标的平均值,作为圆心的横、纵坐标,将圆心到各个离散点的距离的平均值作为半径。这种方法计算简单,适用于离散点分布较均匀的情况,但对于分布不均的情况, 所计算的圆心位置会偏向离散点分布较密集的一侧,半径的计算值也会偏小,误差较大。加权平均法是对平均值法的改进,它在计算圆心坐标时加入一个与两相邻点间弧长相关的系数,降低了离散点分布不均的影响,减小了误差。但是, 由于两相邻点间的弧长是无法精确得到的(实际中采用两点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论