福建省泉州五中、莆田一中、漳州一中高三上学期期末联考理科数学试题及答案_第1页
福建省泉州五中、莆田一中、漳州一中高三上学期期末联考理科数学试题及答案_第2页
福建省泉州五中、莆田一中、漳州一中高三上学期期末联考理科数学试题及答案_第3页
福建省泉州五中、莆田一中、漳州一中高三上学期期末联考理科数学试题及答案_第4页
福建省泉州五中、莆田一中、漳州一中高三上学期期末联考理科数学试题及答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、泉州五中、莆田一中、漳州一中2014届高三上学期期末联考数学(理)试题一、选择题(本大题共10小题,每小题5分,共50分在每小题给出的四个选项中有且只有一项是符合题目要求的,把答案填在答题卡的相应位置)1设是虚数单位,则等于( )a、0 b、 c、 d、2. 若是向量,则“”是“”的( )a充分而不必要条件b必要而不充分条件c充要条件 d既不充分也不必要条件3由曲线,直线,和轴围成的封闭图形的面积(如图)可表示为( )a bcd 4已知直线平面,直线m,给出下列命题: m; m 其中正确的命题是( )a b c d5.已知,则( )a. b. c. d. 6 一个几何体的三视图如图,则该几何体

2、的体积为( )a. b. c. d. 8.抛物线的焦点为,点为该抛物线上的动点,又点,则的最小值是() abcd9已知函数有两个极值点,则实数的取值范围是()abcd10已知f(x)=,在区间0,2上任取三个数,均存在以 为边长的三角形,则的取值范围是( )a. b. c. d. 二、填空题:本大题共5小题,每小题4分,共20分把答案填在答题卡的相应位置11已知12. 观察下列等式: 照此规律, 第n个等式可为 . 13.已知、分别是双曲线的左、右焦点,为双曲线上的一点,若,且的三边长成等差数列,则双曲线的离心率是_.14已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,

3、记作设是长为2的线段,点集所表示图形的面积为_.15.如图,四边形abcd是正方形,延长cd至e, 使de=cd,若点p是以点a为圆心,ab为半径的 圆弧(不超出正方形)上的任一点,设向量,则的最小值为_, 的最大值为_;三、解答题:本大题共6小题,共80分解答写在答题卡相应位置,应写出文字说明、证明过程或演算步骤16(本题满分13分)已知函数() 求函数的最小正周期和对称轴的方程;()设的角的对边分别为,且,求的取值范围17(本题满分13分)已知数列为等差数列,且 ()求数列的通项公式;()证明:18(本题满分13分)如图, 是边长为的正方形,平面,与平面所成角为.()求证:平面;()求二面

4、角的余弦值;()设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论.19(本题满分13分)已知椭圆:的左焦点为,且过点. ()求椭圆的方程;()设过点p(-2,0)的直线与椭圆e交于a、b两点,且满足.(1)若,求的值;(2) 若m、n分别为椭圆e的左、右顶点,证明: 20(本题满分14分) 已知函数()当时,求函数的极小值;()当时,过坐标原点作曲线的切线,设切点为,求实数的值;()设定义在上的函数在点处的切线方程为当时,若在内恒成立,则称为函数的“转点”当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由 21本题设有(1)、(2)、(3)三个选

5、答题,每小题7分,请考生任选2个小题作答,满分14分如果多做,则按所做的前两题记分作答时,先用2b铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(1)(本小题满分7分)选修42:矩阵与变换已知矩阵,记绕原点逆时针旋转的变换所对应的矩阵为()求矩阵; ()若曲线:在矩阵对应变换作用下得到曲线,求曲线的方程(2)(本小题满分7分)选修44:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系已知曲线的极坐标方程为,直线的参数方程为为参数,)()化曲线的极坐标方程为直角坐标方程;()若直线经过点,求直线被曲线截得的线段的长(3)(本小题满分7分)选修

6、45:不等式选讲设不等式的解集与关于的不等式的解集相同()求,的值;()求函数的最大值,以及取得最大值时的值.2014届高三上学期期末理科数学试卷参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)1.d 2.a 3.b 4.d 5. d 6. d 7. a 8.b 9.b 10.c二、填空题:本大题共5小题,每小题4分,共20分11. 12(注:没写不扣分) 13 14. 15. 的最小值是1;最大值为.三、解答题(本大题共6小题,共80分)16解:() 3分 故的最小正周期为 4分由()得对称轴的方程为 6分()由得即 8分解法一:由正弦定理得=10分11分的取值范围为.

7、 13分解法二:由余弦定理得 10分 解得 11分又,所以的取值范围为 13分17(i)解:设等差数列的公差为d.由即d=1. 3分所以5分 即 7分(ii)证明: , 9分 10分12分 13分18.()证明: 因为平面, 所以. 2分 因为是正方形,所以,又相交从而平面. 4分()解:因为两两垂直,所以建立空间直角 坐标系如图所示. 因为与平面所成角为, 即, 5分所以.由可知,. 6分则,所以, 7分设平面的法向量为,则,即,令,则. 8分因为平面,所以为平面的法向量,所以. 9分因为二面角为锐角,所以二面角的余弦值为. 10分()解:点是线段上一个动点,设. 则,因为平面,所以,11分

8、即,解得. 12分此时,点坐标为,符合题意. 13分19. 【解析】()因为焦点为, c=1,又椭圆过,取椭圆的右焦点,由得,所以椭圆e的方程为 3分()(1)设, 显然直线斜率存在,设直线方程为 由得: 得,5分 ,符合,由对称性不妨设,解得,8分 (2)若,则直线的方程为,将代入得, 不满足题意,同理9分 ,11分 13分 20【解析】(i)当时,当时,;当时;当时.所以当时,取到极小值。3分(ii),所以切线的斜率整理得,显然是这个方程的解,5分又因为在上是增函数,所以方程有唯一实数解,故.7分(iii)当时,函数在其图象上一点处的切线方程为,设,则,8分若,在上单调递减,所以当时,此时;所以在上不存在“转点”.9分若时,在上单调递减,所以当时, ,此时,所以在上不存在“转点”.11分若时,即在上是增函数,当时,当时, 即点为“转点”,13分故函数存在“转点”,且是“转点”的横坐标.14分21. (1)(本小题满分7分)选修42:矩阵与变换解:()由已知得,矩阵 3分()矩阵,它所对应的变换为解得把它代人方程整理,得 , 即经

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论