




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章 点的合成运动,第一节 点的绝对运动、相对运动和牵连运动,合成运动:相对于某一参考体的运动可由相对于其它参考体的几个运动组合而合,称这种运动为合成运动,沿直线轨道滚动的圆轮,轮缘上A点的运动,对于地面上的观察者来说,点的轨迹是旋轮线,但对站在轮心上的观察者来说是圆。,A点的运动可看成随轮心的平动与绕轮心转动的合成。,静坐标系或定坐标系:固结在地球上的坐标系;以Oxyz表示。,动坐标系:固定在其它相对于地球运动的参考体上的坐标系;以Oxyz表示,参考系,试讨论如下机构的静坐标系和动坐标系。,三种运动,绝对运动:动点相对于静坐标系的运动。,相对运动:动点相对于动坐标系的运动,牵连运动:动坐标
2、系相对于静坐标系的运动,试讨论如下机构中,M点在图示位置时的绝对运动、相对运动和牵连运动。,动点:M,动坐标系:固结于摇杆OA(有时直接说摇杆OA ),M点的绝对运动:沿半圆槽BC运动,轨迹为圆弧,解题格式,动系:摇杆OA,静坐标系:固结于地面(有时直接说地面),M点的相对运动:相对于动坐标系(摇杆OA)做平动,也就是沿OA杆上的滑槽滑动,解题格式,牵连运动:点M受动坐标系(摇杆OA)牵连,牵连运动是动坐标系的运动,此题中动坐标系是摇杆OA,因此牵连运动为摇杆OA绕O点定轴转动。,动点的绝对运动和相对运动都是点的运动,它可能是直线运动,也可能是曲线运动。,牵连运动则是动坐标系的运动,属于刚体的
3、运动,有平移、定轴转动和其它形式的运动。,动坐标系作何种运动取决于与之固连的刚体的运动形式。,讨 论,第二节 速度合成定理,绝对速度、相对速度和牵连速度,绝对速度va:动点相对于静坐标系运动的速度,相对速度vr:动点相对于动坐标系运动的速度,牵连速度ve:某瞬时,与动点相重合的动坐标系上的点(牵连点)相对于静坐标系运动的速度。(即动点若相对于动坐标系静止时它所应具有的速度),牵连点:在任意瞬时,与动点相重合的动坐标系上的点,称为动点的牵连点。牵连点是一个几何点(几何位置)。,动坐标系是一个包含与之固连的刚体在内的运动空间。除非动坐标系作平移,否则动坐标系上各点的运动状态是不相同的。 在任意瞬时
4、,只有牵连点的运动能够给动点以直接的影响。为此,定义某瞬时,与动点相重合的动坐标系上的点(牵连点)相对于静坐标系运动的速度称为动点的牵连速度,讨 论,下图中,动坐标系OA上各点的速度大小不一样,M点绝对速度va沿着绝对运动轨迹(半圆弧)在点M处的切线方向,即va垂直于点M与圆心的连线; M点相对速度vr沿着动点M与动系(摇杆OA)的相对运动轨迹的切线方向,即沿着OA上的滑槽方向; M点牵连速度ve是动系(摇杆OA)上与M点位置重合的那个几何点的速度,由于摇杆OA 绕点O定轴转动,故ve 垂直于杆OA。,再如,直管OB以匀角速度绕定轴O转动,小球M以速度u在直管OB中作相对的匀速直线运动,如图示
5、。将动坐标系固结在OB管上,以小球M为动点。随着动点M的运动,牵连点在动坐标系中的位置在相应改变。设小球在t1、t2瞬时分别到达M1、M2位置,,则动点的牵连速度分别为,动点与牵连点,动点和牵连点是一对相伴点,在运动的同一瞬时,它们是重合在一起的。,动点是与动系有相对运动的点 。动点往往是有实际意义的,比如滑块、小环、杆端等等。,牵连点是动系上的几何点 ,是个几何位置。,对动点来说,牵连运动是动坐标系在牵连点这个几何位置处的运动。,在运动的不同瞬时,动点与动坐标系上不同的点重合,而这些点在不同瞬时的运动状态往往不同 。,速度合成定理,动点在一个任意运动的刚体K上沿弧AB相对于刚体K运动,动坐标
6、系固结在刚体K上,静坐标系固结在地面上,绝对运动轨迹,是此牵连点的轨迹。,上式为矢量方程,它包含了绝对速度、牵连速度和相对速度的大小、方向六个量,已知其中四个量可求出其余的两个量。,例7-1 火车车厢以速度v1沿直线轨道行驶(图7-5)。雨滴M沿铅垂落下,其速度为v2。求雨滴相对于车厢的速度。,例7-1 火车车厢以速度v1沿直线轨道行驶(图7-5)。雨滴M沿铅垂落下,其速度为v2。求雨滴相对于车厢的速度。,绝对运动:雨滴相对地面铅垂落下,相对运动 :雨滴相对于车厢的运动,牵连运动:车厢的运动(平动),解:,绝对速度为va= v2,车厢作移动,故雨滴M的牵连点的速度为v1,即雨滴M的牵连速度ve
7、 = v1,解:该机构在运动过程中,滑块A与摇杆O1B相对运动,且A相对于摇杆O1B的直线运动轨迹为已知,,动点:滑块A,动系:与摇杆O1B固连,绝对运动:圆周运动,牵连运动:摇杆绕O1轴的转动,相对运动:滑块沿滑槽的直线运动,图(b)是A点的速度矢量图,建立图示A坐标轴,并将速度合成定理的矢量方程分别向轴上投影,,解:凸轮为定轴转动,AB杆为直线平移,只要求出A点的速度就可以知道AB杆各点的速度。由于A点始终与凸轮接触,因此,它相对于凸轮的相对运动轨迹为已知的圆。,选A为动点,动坐标系Oxy固结在凸轮上,,绝对运动:直线运动,方向如图,关于动点动系选择的讨论,本题中,选择AB杆的A点为动点,
8、动坐标系与凸轮固结。因此,三种运动、特别是相对运动轨迹十分明显、简单且为已知的圆,使问题得以顺利解决。 若选凸轮上的点(例如与A重合之点)为动点,而动坐标系与AB杆固结,这样,相对运动轨迹不仅难以确定,而且其曲率半径未知。因而相对运动轨迹变得十分复杂,这将导致求解(特别是求加速度)的复杂性。,动点的绝对加速度、相对加速度和牵连加速度,绝对加速度aa:动点相对于静坐标系运动的加速度,相对加速度ar:动点相对于动坐标系运动的加速度,设:动点M在动坐标系中的坐标为xyz,牵连运动为平移,单位矢量i、j、k大小、方向不变,牵连加速度ae :指某瞬时动坐标系上与动点相重合之点(牵连点)相对于静坐标系运动
9、的加速度,动坐标系作平移时,动点的牵连速度和牵连加速度等于动坐标系原点O的速度和加速度,牵连运动为平移时,点的加速度合成定理,设动点在动坐标系Oxyz上沿相对轨迹曲线AB运动,而动坐标相对静坐标系Oxyz作平行移动,当牵连运动为平移时,动点的绝对加速度等于牵连加速度与相对加速度的矢量和。这是牵连运动为平移时,点的加速度合成定理,动点:小环M,解:,动系:固连在连杆BC上,静系:固连在地面上,将加速度合成定理的矢量方程向y轴投影,方向如图示,牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢量和,当牵连运动为转动时,由于转动的牵连运动与相对运动相互影响的结果而产生一种附
10、加的加速度,称为科里奥利加速度,简称科氏加速度,以符号ak表示,设圆盘以匀角速度绕固定轴O顺时针转动,同时圆盘上有一动点M,在半径为R的圆槽内以大小不变的相对速度vr顺时针作圆周运动,那么M点对于静参考系的绝对加速度应该是多少?,动系固连于圆盘上,随同圆盘一起转动,相对运动:匀速圆周运动,在t瞬时相对速度为vr,相对加速度:,牵连速度 :R,牵连加速度 R2,绝对速度大小,绝对运动也为匀速圆周运动,绝对加速度大小,方向指向圆心O点,从上式中可以看出,动点的绝对加速度除了牵连加速度R2和相对加速度两项外,还多了一项,可见牵连运动为转动时,动点的绝对加速度等于牵连加速度、相对加速度与科氏加速度的矢
11、量和。上述虽然是在牵连运动为转动的特殊例子导出的,但对牵连运动为一般运动的情况也适用。,科氏加速度的计算, : 与vr间的夹角,方向垂直于与vr所决定的平面,它的指向按右手定则决定如图,将vr顺着 的转向转过90,即得ak的方向,A为动点,动坐标系固结在凸轮上,aA为负值,说明aA的方向与图假设的方向相反。在此瞬时,aA的实际方向铅直向下。,1.判断题目是点的合成运动还是刚体平面运动; 关键在于看动点与刚体之间有没有相对滑动。若有,是点的合成运动;若没有,是刚体平面运动,点的合成运动解题原则,之所以用“看动点与刚体之间有没有相对滑动” 来判断题目是点的合成运动还是是刚体平面运动,主要是因为滑动
12、轨迹比较好判定。但是这一条也不是绝对的。就算相对运动不是滑动,如果相对运动轨迹很明显,也可以按点的合成运动来处理。,2.判断出题目是点的合成运动后,首先要确定动点。本科阶段运动学共有5种动点:滑块,套筒,小环,杆端,轮心。,试比较以下两个机构,注意以下机构中动点的取法:,3. 确定了动点后,马上确定动系。与动点有相对滑动的那个运动的刚体就是动系。,4.确定了动系后,马上判断绝对运动、相对运动和牵连运动。 判断这三种运动的轨迹(重要!)的作用: 1)确定绝对速度、相对速度和牵连速度的方向,画出速度合成图; 2)根据三种运动的轨迹是直线还是曲线,判断绝对加速度、相对加速度和牵连加速度这三个加速度各自有没有切向和法向分量(重要!),从而确定这些加速度的方向,画出加速度合成图;,5.根据已画出的速度合成图和加速度合成图;将速度合成定理和加速度合成定理(注意根据牵连运动是平动还是转动有不同的加速度合成定理)严格按图投影,得到投影方程(得分点),从而求解。投影时绝对不能交换等号两边的项,只有完成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025餐厅承包合同「范本」
- 2025船舶维护保养合同模板
- 2025年软件开发外包合同范本
- 2025停车场物业管理合同范本
- 2025管理食品供应合同
- 2025著作权保护合同样本
- 2025租房合同注意事项
- 2025节能照明系统工程服务合同样本
- 2025版标准租赁合同
- 《创新与课件发展》课件
- 给水厂毕业设计正文(全)
- 《概率思想对几个恒等式的证明(论文)9600字》
- 重金属冶金学-钴冶金课件
- 《EBSD数据分析》课件
- 初高中生物衔接课课件
- KET词汇表(英文中文完整版)
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- JJF(闽)1097-2020总溶解固体(TDS)测定仪校准规范-(现行有效)
- 推拉门定制安装合同协议书范本
- 麦迪床边重症系统操作指南
- 岗位价值评价模型
评论
0/150
提交评论