版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初三数学复习 数与式 第一课时 实数的有关概念【知识要点】(一)实数的有关概念 (1)实数的分类 当然还可以分为:正实数、零、负实数。 有理数还可以分为:正有理数,零,负有理数 (2)数轴: 数轴是研究实数的重要工具,是在数与式的学习中,实现数形结合的载体,数轴的三要素:原点、正方向和单位长度,实数与数轴上的点是一一对应的,我们还可以利用这种一、一对应关系来比较两个实数的大小。 (3)绝对值 绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离。 (4)相反数、倒数 若a、b两个数为互为相反数,则a+b=0。 若m、n两个数互为倒数,则mn=1。 (5)三种非负数: “几个非负
2、数的和等于零,则必定每个非负数都同时为零”的结论常用于化简,求值。(6)平方根、算术平方根、立方根的概念。如果一个数的平方等于a,这个数就叫做a的平方根一个正数有两个平方根,它们互为相反数;0有 一个平方根,它是0本身;负数没有平方根a(a0)的平方根记作 一个正数a的正的平方根,叫做a的算术平方根a(a0)的算术平方根记作 (7)科学计数法、有效数字和近似值的概念。1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字3.科学记数法:把一个数用 (1 10,n为整数)
3、的形式记数的方法叫科学记数法【典型例题:】P2例1、(2012贵州六盘水,5,3分)数字,中无理数的个数是( )A1 B2 C3 D4点评:此题主要考查了无理数的定义,其中:(1)有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,例如5=5.0;分数都可以化为有限小数或无限循环小数(2)无理数是无限不循环小数,其中有开方开不尽的数(3)有限小数和无限循环小数都可以化为分数,也就是说,一切有理数都可以用分数来表示;而无限不环小数不能化为分数,它是无理数P2例4、(2012湖北省恩施市,题号16 分值 4)观察下表:根据表中数的排列规律,B+D=_.例题补充、(2012河北省17,3分)
4、17、某数学活动小组的20位同学站成一列做报数游戏,规则是:从前面第一位同学开始,每位同学依次报自己顺序的倒数加1,第1位同学报,第2位同学报,这样得到的20个数的积为_. 第二课时:实数的运算及比较大小【知识要点】一、实数的运算1.加法:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数2.减法:减去一个数等于加上这个数的相反数3.乘法:几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负几个数相乘,有一个因数
5、为0,积就为04.除法:除以一个数,等于乘上这个数的倒数两个数相除,同号得正,异号得负,并把绝对值相除0除以任何一个不等于0的数都得05.乘方与开方 (1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方(3)零指数与负指数二、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b0 ab;a-b=0 a=b;a-b0 ab.4.对于实数a,b,c,若
6、ab,bc,则ac.5.无理数的比较大小:利用平方转化为有理数:如果 ab0,a2b2 则 ab ;或利用倒数转化:如比较 与 .三、实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算这三级运算的顺序是三、二、一如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算四、实数的运算律加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc【典型例题:】P3例3(2012山东省聊城,10,3分)如右图所示的数轴上,点B与点C关于点A对称,A、B两点对应的实数是和
7、-1,则点C所对应的实数是( )A. 1+ B. 2+ C. 2-1 D. 2+1P4例 4(2012广东汕头,21,7分)观察下列等式:第1个等式:a1=(1);第2个等式:a2=();第3个等式:a3=();第4个等式:a4=();请解答下列问题:(1)按以上规律列出第5个等式:a5=;(2)用含有n的代数式表示第n个等式:an=(n为正整数);(3)求a1+a2+a3+a4+a100的值分析:(1)(2)观察知,找第一个等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为 序号的2倍减1和序号的2倍加1(3)运用变化规律计算第三课时:整式与因式分
8、解(1) :【整式知识梳理】 代数式的分类 1.整式有关概念 (1)单项式:只含有 的积的代数式叫做单项式。单项式中_叫做这个单项式的系数;单项式中_叫做这个单项式的次数; (2)多项式:几个 的和,叫做多项式。_ 叫做常数项。 多项式中_的次数,就是这个多项式的次数。多项式中_的个数,就是这个多项式的项数。2.同类项、合并同类项(1)同类项:_ 叫做同类项;(2)合并同类项:_ 叫做合并同类项;(3)合并同类项法则: (4)去括号法则:括号前是“”号,_ 括号前是“”号,_ (5)添括号法则:添括号后,括号前是“+”号,插到括号里的各项的符号都 ;括号前是“”号,括到括号里的各项的符号都 。
9、3.整式的运算(1)整式的加减法:运算实质上就是合并同类项,遇到括号要先去括号。(2)整式的乘除法: 4.幂的运算:同底数幂的乘法,底数不变,指数相加。即:(,都是正整数)。 幂的乘方,底数不变,指数相乘。即:(,都是正整数)。 积的乘方等于每一个因数乘方的积。即:(是正整数)同底数幂相除,底数不变,指数相减。即:( ), ,()5、整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。 (2)单项式乘以多项式: 。(3)乘法公式:平方差: 。完全平方公式: 。6.整式的除法:(1)单项式相除:把它们的系数、相同字母分别相除,作为商的
10、因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式,相同字母相除要用到同底数幂的运算性质。(2)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加7.代数式的化简求值 含有绝对值的代数式的化简,通常可利用数轴的直观性;整式的化简求值常常要灵活运用配方法、换元法、整体代换思想和构造思想;分式的化简求值一般可对分子、分母的多项式因式分解、约分。再运用分式的性质化简计算;二次根式的化简求值一般应先考虑能否利用二次根式的性质,配方法、乘法公式等化简计算。(2) 【因式分解知识梳理】 1分解因式:把一个多项式化成 的形式,这种变形叫做把这个多项式分解因式2分解困式的方
11、法: 提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法 运用公式法:平方差公式: ; 完全平方公式: ;3分解因式的步骤:(1)分解 因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法 分解(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。【典型例题:】P6例4、分解因式(x-1)2-2(x-1)+1的结果是()A(x-1)(x-2) Bx2 C(x+1)2 D(x-2)2 P6例5( 2
12、012年浙江省宁波市,20,6)同样大小的黑色棋子按如图所示的规律摆放:第4个第3个第2个第1个(1) 第5个图形有多少颗黑色棋子?(2) 第几个图形有2013颗棋子?说明理由。 第四课时 分式【整式知识梳理】1分式有关概念(1)分式:分母中含有字母的式子叫做分式。对于一个分式来说:当_时分式有意义。当_时分式没有意义。只有在同时满足_,且_这两个条件时,分式的值才是零。(2)最简分式:一个分式的分子与分母_时,叫做最简分式。(3)约分:把一个分式的分子与分母的_约去,叫做分式的约分。将一个分式约分的主要步骤是:把分式的分子与分母_,然后约去分子与分母的_。(4)通分:把几个异分母的分式分别化
13、成与_相等的_的分式叫做分式的通分。通分的关键是确定几个分式的_ 。(5)最简公分母:通常取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。求几个分式的最简公分母时,注意以下几点:当分母是多项式时,一般应先 ;如果各分母的系数都是整数时,通常取它们的系数的 作为最简公分母的系数;最简公分母能分别被原来各分式的分母整除;若分母的系数是负数,一般先把“”号提到分式本身的前边。2分式性质:(1)基本性质:分式的分子与分母都乘以(或除以)同一个 ,分式的值 (2)符号法则:_ 、_ 与_的符号, 改变其中任何两个,分式的值不变。即:3.分式的运算: 注意:为运算简便, 若分式的分子与
14、分母的各项系数是分数或小数时,一般要化为整数。 若分式的分子与分母的最高次项系数是负数时,一般要化为正数。 (1)分式的加减法法则:(1)同分母的分式相加减, ,把分子相加减;(2)异分母的分式相加减,先 ,化为 的分式,然后再按 进行计算(2)分式的乘除法法则:分式乘以分式,用_做积的分子,_做积的分母,公式:_;分式除以分式,把除式的分子、分母_后,与被除式相乘,公式: ;(3)分式乘方是_,公式_。4分式的混合运算顺序,先 ,再算 ,最后算 ,有括号先算括号内。5对于化简求值的题型要注意解题格式,要先化简,再代人字母的值求值【典型例题:】类型一:分式的基本性质 例2、(2012浙江省义乌
15、市,8,3分)下列计算错误的是( )A B C D类型二:分式化简求值例、2012广东肇庆,20,7)先化简,后求值:,其中=-4 第五课时 数的开方与二次根式【知识梳理】1.二次根式:形如(a0)的式子叫做二次根式。注意:(1)在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是为二次根式的前提条件,如,等是二次根式,而,等都不是二次根式。(2)二次根式有意义的条件:由二次根式的意义可知,当a0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。(3)二次根式(a0)的非负性(a0)表示a的算术平方根,也
16、就是说,(a0)是一个非负数,即0(a0)。2.、最简二次根式:同时满足:被开方数的因数是整数,因式是整式(分母中不含根号); 被开方数中含能开得尽方的因数或因式。这样的二次根式叫做最简二次根式。3.、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫同类二次根式。4.、二次根式的性质(1)(a0)描述为:一个非负数的算术平方根的平方等于这个非负数。注意:二次根式的性质公式(a0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a0,则,如:,。(2)描述为:一个数的平方的算术平方根等于这个数的绝对值。注意:、化简时,一定要弄明白被开方数的底数a是正
17、数还是负数,若是正数或0,则等于a本身,即;若a是负数,则等于a的相反数-a,即;k、中的a的取值范围可以是任意实数,即不论a取何值,一定有意义;、化简时,先将它化成,再根据绝对值的意义来进行化简。(3)与的异同点不同点:与表示的意义是不同的,表示一个正数a的算术平方根的平方,而表示一个实数a的平方的算术平方根;在中,而中a可以是正实数,0,负实数。但与都是非负数,即,。因而它的运算的结果是有差别的,(a0),而k、相同点:当被开方数都是非负数,即a0时,=;a0时,无意义,而。5、二次根式的运算(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版港口物流中心运营合同
- 2025年度安全生产标准化咨询服务及现场指导合同3篇
- 2024生物质锅炉余热回收利用项目合作协议3篇
- 2025年度大理石地暖系统设计与施工合同3篇
- 2024软件系统销售合同系统购买合同
- 2024物业企业服务能力提升与市场拓展合作协议3篇
- 敦煌壁画与文创知到智慧树章节测试课后答案2024年秋酒泉职业技术学院
- 森林防火施工员聘用协议
- 建筑工程节能改造合同
- 别墅锌钢栏杆安装施工协议
- 服务推广合同协议(2025年)
- 中国保险行业协会官方-2023年度商业健康保险经营数据分析报告-2024年3月
- 新人教版小学三年级数学上册知识点整理归纳培训课件
- 霉菌性阴道炎VVC的分类及诊治
- 预制舱技术方案思源弘瑞课件
- 四年级科学《运动与摩擦力》说课课件
- 诉讼费退费确认表
- 全球变暖视野下中国与墨西哥的能源现状分析
- 新外研版八年级上册英语全册教案(教学设计)
- 2022年(高级)茶艺师职业资格考试参考题库-下(多选、判断题部分)
- 边坡安全施工组织方案
评论
0/150
提交评论