下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解解课 题:1.1.2 探索勾股定理(二)教学目标:1.学会用拼图的方法验证勾股定理。2.运用勾股解决一些实际问题.3.培养学生的创新能力和解决实际问题的能力.CABD第1题教学重点:勾股定理的证明及其应用.教学难点:勾股定理的证明.教学方法:教师引导和学生自主探索相结合的方法.教学过程 一回看练习:如图,等腰ABC中,ABAC,DE垂直平分AB,若AB=20,BD=12,DC_;若DBC的周长为20,ABC的周长为32,则AB=_二引入新课师我们可以看出用拼图的方法推证数学中的结论非常直观.上一节课我们已经通过数格子通过一些特例大胆地猜想出了勾股定理.同时又利用一些特例验证了勾股定理,但我们
2、注意到我们不可能拿所有的直角三角形一一验证,靠一些特例归纳、猜想出来的结论不一定正确.因此我们需要用另一种方法说明直角三角形三边的关系.1拼一拼 (1)在一张硬纸板上画4个如右图所示全等的直角三角形.并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用它说明勾股定理吗?2归纳生1我拼出了如下图所示的图形,中间是一个边长为c的正方形.观察图形我们不难发现,大的正方形的边长是(a+b).要利用这个图说明勾股定理,我们只要用两种方法表示这个大正方形的面积即可.大正方形面积可以表示为:(a+b)2,又可以表示为:ab4+(ba).对比这两种表示方法
3、,可得出c2=ab4+(ba).化简、整理得c2=a2+b2.因此我们得到了勾股定理.生2我拼出了和这个同学不一样的图,如下图所示,大正方形的边长是c,小正方形的边长为ba,利用这个图形也可以说明勾股定理.因为大正方形的面积也有两种表示方法,既可以表示为c2,又可以表示为ab4+(ba)2.对比两种表示方法可得c2=ab4+(ba)2.化简得c2=a2+b2.同样得到了勾股定理.在所有的几何定理中,勾股定理的证明方法也许是最多的了.有人做过统计,说有五百余种.1940年,国外有人收集了勾股定理的365种证法,编了一本书.其实,勾股定理的证法不止这些,作者之所以选用了365种,也许他是幽默地想让
4、人注意,勾股定理的证明简直到了每天一种的地步.2.试一试:(1)如下图所示.这就是这位总统用两个全等的直角三角形拼出的图形,你能证明吗?生上面的图形整体上拼成一个直角梯形.所以它的面积有两种表示方法.既可以表示为(a+b)(a+b),又可以表示为ab2+c2.对比两种表示方法可得 (a+b)(a+b)= ab2+c2.化简,可得a2+b2=c2.3.议一议(1)前面我们讨论了直角三角形三边满足的关系.那么锐角三角形或钝角三角形的三边是否也满足这一关系呢?观察上图,用数格子的方法判断图中两个三角形的三边关系是否满足a2+b2=c2.(2)归纳:我发现在钝角三角形ABC中,虽然a2+b2c2,但它
5、们之间也有一种关系a2+b2c2;在锐角三角形ABC中,a2+b2c2.它们恒成立.三精讲精练1飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?2如下图所示,某人在B处通过平面镜看见在B正上方5米处的A物体,已知物体A到平面镜的距离为6米,问B点到物体A的像A的距离是多少?3在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来;水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少? 1分析:根据题意,可以画出右图,A点表示男孩头顶的位置,C、B点是两个时刻飞机的位置,C是直
6、角,可以用勾股定理来解决这个问题.解:根据题意,得RtABC中,C=90,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2.即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400660=504000米=504千米,即飞机飞行的速度为504千米/时.2分析:此题要用到勾股定理,轴对称及物理上的光的反射知识.解:如例2图,由题意知ABA是直角三角形,由轴对称及平面镜成像可知:AA=26=12米,AB=5米;在RtAAB中,AB2=AA2+AB2=122+52=169=132米所以AB=13米,即B点到物体A的像A的距离为13米.3分析:在此问题中,要注意水草的长度与水深的关系,还要注意水草站立时和吹到一边,它的长度是不变的.解:根据题意,得到下图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年产xx报警传输系统项目建议书
- 高中地理一轮复习课件 综合题答题规范
- 普拉提大器械培训
- 脑血管病影像诊断
- 《简单的组合》(教案)人教版二年级上册数学
- 2023-2024学年广东省深圳市龙华区五年级(上)期末英语试卷
- 一年级下册数学导学案-5.4 拔萝卜 北师大版
- 一年级上册数学导学案-1.2比大小|人教新课标
- 二年级下册数学教案-3.1《对称》人教新课标
- 《数学广角-简单的排列》(教案)2023-2024学年数学二年级上册-人教版
- 废旧物资回收总体服务方案
- 不锈钢水箱检验报告模板内部信息可改
- 海康设备错误代码【精选文档】
- 扫描电镜原理和应用.
- 光电效应测定普朗克常数.ppt
- 保密工作台帐
- 奶茶店项目投资可行性分析报告
- 正山小种的特点
- 毕业设计(论文)基于组态王的电梯远程监控系统设计
- ieee论文投稿模板
- 麦肯锡:如何撰写商业计划书(中文版)商业计划可行性报告
评论
0/150
提交评论