版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、可编辑三角形等高模型与鸟头模型模型二 鸟头模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比如图在中,分别是上的点如图 (或在的延长线上,在上如图 2),则 图 图【例 1】 如图在中,分别是上的点,且,平方厘米,求的面积 【解析】 连接,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比 【巩固】如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少? 【解析】 连
2、接 又,【巩固】如图,三角形ABC被分成了甲(阴影部分)、乙两部分,乙部分面积是甲部分面积的几倍? 【解析】 连接,又,【例 2】 如图在中,在的延长线上,在上,且,平方厘米,求的面积 【解析】 连接, ,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比【例 3】 如图所示,在平行四边形ABCD中,E为AB的中点,三角形AFE(图中阴影部分)的面积为8平方厘米平行四边形的面积是多少平方厘米?【解析】 连接FB三角形AFB面积是三角形CFB面积的2倍,而三角形AFB面
3、积是三角形AEF面积的2倍,所以三角形ABC面积是三角形AEF面积的3倍;又因为平行四边形的面积是三角形ABC面积的2倍,所以平行四边形的面积是三角形AFE面积的倍因此,平行四边形的面积为(平方厘米)【例 4】 已知的面积为平方厘米,求的面积【解析】 ,设份,则份,份,份,份,恰好是平方厘米,所以平方厘米【例 5】 如图,三角形的面积为3平方厘米,其中,三角形的面积是多少?【解析】 由于,所以可以用共角定理,设份,份,则份, 份,由共角定理,设份,恰好是平方厘米,所以份是平方厘米,份就是平方厘米,三角形的面积是平方厘米【例 6】 (2007年”走美”五年级初赛试题)如图所示,正方形边长为6厘米
4、,三角形的面积为_平方厘米【解析】 由题意知、,可得根据”共角定理”可得,;而;所以;同理得,;,故(平方厘米)【例 7】 如图,已知三角形面积为,延长至,使;延长至,使;延长至,使,求三角形的面积 【解析】 (法)本题是性质的反复使用连接、,同理可得其它,最后三角形的面积(法)用共角定理在和中,与互补,又,所以同理可得,所以【例 8】 如图,平行四边形,平行四边形的面积是, 求平行四边形与四边形的面积比 【解析】 连接、根据共角定理 在和中,与互补,又,所以同理可得,所以所以【例 9】 如图,四边形的面积是平方米,求四边形的面积 【解析】 连接由共角定理得,即同理,即所以连接,同理可以得到所
5、以平方米【例 10】 如图,将四边形的四条边、分别延长两倍至点、,若四边形的面积为5,则四边形的面积是 【解析】 连接、由于,于是,同理于是再由于,于是,同理于是那么【例 11】 如图,在中,延长至,使,延长至,使,是的中点,若的面积是,则的面积是多少?【解析】 在和中,与互补,又,所以同理可得,所以【例 12】 如图,求【解析】 本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的种情况最后求得的面积为【例 13】 如图所示,正方形边
6、长为厘米,是的中点,是的中点,是的中点,三角形的面积是多少平方厘米? 【解析】 连接、因为,根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,再根据”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”,得到,所以平方厘米【例 14】 四个面积为的正六边形如图摆放,求阴影三角形的面积 【解析】 如图,将原图扩展成一个大正三角形,则与都是正三角形假设正六边形的边长为为,则与的边长都是,所以大正三角形的边长为,那么它的面积为单位小正三角形面积的49倍而一个正六边形是由6个单位小正三角形组成的,所以一个单位小正三角形的面积为,三角形的面积为由于,所以与三角形的面积之比为同理可知、与三角形的面积之比都为,所以的面积占三角形面积的,所以的面积的面积为【巩固】已知图中每个正六边形的面积都是1,则图中虚线围成的五边形的面积是 【解析】 从图中可以看出,虚线和虚线外的图形都等于两个正六边形的一半,也就是都等于一个正六边形的面积;虚线和虚线外的图形都等于一个正六边形的一半,那么它们合起来等于一个正六边形的面积;虚线外的图形是两个三角形,从右图中可以看出,每个三角形都是一个正六边形面积的,所以虚线外图形的面积等于,所以五边形的面积是8、这个世界并不是掌握在那些嘲笑者的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房建装修工程项目施工方案
- 排水试验段方案
- 小学二年级语文老师的个人工作总结
- “送教上门”活动方案
- 安全生产责任考核制度
- 学校 初中学生养成教育实施方案
- 物业公司清洁绿化外包管控方案
- 乒乓球社团活动策划方案
- 第二-三章 统计调查与整 理课件
- 脱硫塔外保温施工方案
- 2024年保育员(初级)考试题库附答案
- 水电安装施工组织设计方案样本
- 社会主义核心价值观
- 水平定向钻入场安全教育考试试题及答案
- 变电站设计问题案例及分析报告
- 建筑地基基础检测规范DBJ-T 15-60-2019
- DB32T3916-2020建筑地基基础检测规程
- 中国纺织文化智慧树知到期末考试答案2024年
- ktv免责协议书范本模板
- 食品保藏探秘智慧树知到期末考试答案2024年
- 天津市和平区2023-2024学年七年级上学期期中数学试题(含解析)
评论
0/150
提交评论