已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数y=ax2的图象和性质,初三数学,x,y,一.平面直角坐标系:1.有关概念:,x(横轴),y(纵轴),o,第一象限,第二象限,第三象限,第四象限,P,a,b,(a,b),2.平面内点的坐标:,3.坐标平面内的点与有序实数对是:,一一对应.,坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应;任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.,4.点的位置及其坐标特征:.各象限内的点:.各坐标轴上的点:.各象限角平分线上的点:.对称于坐标轴的两点:.对称于原点的两点:,x,y,o,(+,+),(-,+),(-,-),(+,-),P(a,0),Q(0,b),P(a,a),Q(b,-b),M(a,b),N(a,-b),A(x,y),B(-x,y),C(m,n),D(-m,-n),函数图象画法,列表,描点,连线,0,0.25,1,2.25,4,0.25,1,2.25,4,描点法,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,用光滑曲线连结时要自左向右顺次连结,0,-0.25,-1,-2.25,-4,-0.25,-1,-2.25,-4,注意:列表时自变量取值要均匀和对称。,0,0.5,2,4.5,8,0.5,2,4.5,8,列表参考,0,0.5,2,4.5,8,0.5,2,4.5,8,0,1.5,-6,1.5,-6,二次函数y=ax2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,这条抛物线关于y轴对称,y轴就是它的对称轴。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,对称轴与抛物线的交点叫做抛物线的顶点。,(0,0),(0,0),y轴,y轴,在x轴的上方(除顶点外),在x轴的下方(除顶点外),向上,向下,当x=0时,最小值为0。,当x=0时,最大值为0。,二次函数y=ax2的性质,、顶点坐标与对称轴,、位置与开口方向,、增减性与极值,2、练习2,3、想一想,在同一坐标系内,抛物线y=x2与抛物线y=-x2的位置有什么关系?如果在同一坐标系内画函数y=ax2与y=-ax2的图象,怎样画才简便?,4、练习4,动画演示,当a0时,在对称轴的左侧,y随着x的增大而减小。,当a0时,在对称轴的右侧,y随着x的增大而增大。,当a0时,在对称轴的左侧,y随着x的增大而增大。,当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大。当x=0时函数y的值最小。当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大。,二次函数y=ax2的性质,2、根据左边已画好的函数图象填空:(1)抛物线y=2x2的顶点坐标是,对称轴是,在侧,y随着x的增大而增大;在侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外)。,(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y0.,(0,0),y轴,对称轴的右,对称轴的左,0,0,上,下,增大而增大,增大而减小,0,1、已知抛物线y=ax2经过点A(-2,-8)。(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上。(3)求出此抛物线上纵坐标为-6的点的坐标。,解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解出a=-2,所求函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《简·爱》读书笔记500字10篇
- 2021员工个人工作总结5篇
- 在企业的实习报告模板五篇
- 敬老院志愿活动个人总结五篇
- 庆祝中国人民警察节心得作文
- 电视台实习报告模板集合10篇
- 2024年新型企业食堂租赁及运营合作协议书3篇
- 小学语文教师工作评价
- “两个结合”视域下课程思政融入通识课的路径探索
- 电梯维修工培训资料
- 湖南2025年湖南电气职业技术学院招聘14人历年参考题库(频考版)含答案解析
- 《电工技术》课件-电气安全及电气火灾预防
- 湖南省湘西州吉首市2023届九年级上学期期末素质监测数学试卷(含解析)
- 期末试卷:福建省厦门市集美区2021-2022学年八年级上学期期末历史试题(原卷版)
- 美容院2024年度规划
- 装饰装修巡查记录表
- 通风工程安装维修合同模板
- 公司安全生产事故隐患内部报告奖励工作制度
- 韩式皮肤管理培训
- 艾滋病预防知识讲座
- 八年级道德与法治开学摸底考试卷(天津专用)(答题卡)A4版
评论
0/150
提交评论