




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DeepLearning,Deeplearningattractslotsofattention.,Ibelieveyouhaveseenlotsofexcitingresultsbefore.,DeeplearningtrendsatGoogle.Source:SIGMOD/JeffDean,UpsanddownsofDeepLearning,1958:Perceptron(linearmodel)1969:Perceptronhaslimitation1980s:Multi-layerperceptronDonothavesignificantdifferencefromDNNtoday1986:BackpropagationUsuallymorethan3hiddenlayersisnothelpful1989:1hiddenlayeris“goodenough”,whydeep?2006:RBMinitialization(breakthrough)2009:GPU2011:Starttobepopularinspeechrecognition2012:winILSVRCimagecompetition,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,NeuralNetwork,“Neuron”,Differentconnectionleadstodifferentnetworkstructures,NeuralNetwork,Networkparameter:alltheweightsandbiasesinthe“neurons”,FullyConnectFeedforwardNetwork,1,-1,1,-2,1,-1,1,0,4,-2,0.98,0.12,FullyConnectFeedforwardNetwork,1,-2,1,-1,4,-2,0.98,0.12,2,-1,-1,-2,3,-1,4,-1,0.86,0.11,0.62,0.83,1,-1,FullyConnectFeedforwardNetwork,1,-2,1,-1,1,0,0.73,0.5,2,-1,-1,-2,3,-1,4,-1,0.72,0.12,0.51,0.85,0,0,-2,2,00=0.510.85,11=0.620.83,0,0,Thisisafunction.,Inputvector,outputvector,Givennetworkstructure,defineafunctionset,OutputLayer,HiddenLayers,InputLayer,FullyConnectFeedforwardNetwork,Input,Output,y1,y2,yM,neuron,8layers,19layers,22layers,AlexNet(2012),VGG(2014),GoogleNet(2014),16.4%,7.3%,6.7%,/slides/winter1516_lecture8.pdf,Deep=Manyhiddenlayers,AlexNet(2012),VGG(2014),GoogleNet(2014),152layers,3.57%,ResidualNet(2015),Taipei101,101layers,16.4%,7.3%,6.7%,Deep=Manyhiddenlayers,Specialstructure,MatrixOperation,1,-2,1,-1,1,0,4,-2,0.98,0.12,11,1211,+,10,0.980.12,=,1,-1,42,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,aL-1,b1,=,y1,y2,yM,NeuralNetwork,W1,W2,WL,b2,bL,x,a1,a2,y,y,b1,W1,x,+,b2,W2,+,bL,WL,x,+,b1,Usingparallelcomputingtechniquestospeedupmatrixoperation,OutputLayer,y1,y2,yM,OutputLayer,HiddenLayers,InputLayer,Featureextractorreplacingfeatureengineering,=Multi-classClassifier,Softmax,ExampleApplication,Input,Output,16x16=256,Ink1Noink0,Eachdimensionrepresentstheconfidenceofadigit.,is1,is2,is0,0.1,0.7,0.2,Theimageis“2”,ExampleApplication,HandwritingDigitRecognition,Machine,“2”,is1,is2,is0,Whatisneededisafunction,Input:256-dimvector,output:10-dimvector,NeuralNetwork,OutputLayer,HiddenLayers,InputLayer,ExampleApplication,Input,Output,“2”,is1,is2,is0,AfunctionsetcontainingthecandidatesforHandwritingDigitRecognition,Youneedtodecidethenetworkstructuretoletagoodfunctioninyourfunctionset.,FAQ,Q:Howmanylayers?Howmanyneuronsforeachlayer?Q:Canthestructurebeautomaticallydetermined?E.g.EvolutionaryArtificialNeuralNetworksQ:Canwedesignthenetworkstructure?,ConvolutionalNeuralNetwork(CNN),ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,LossforanExample,y1,y2,y10,CrossEntropy,“1”,1,0,0,target,Softmax,=110,1,2,10,Givenasetofparameters,TotalLoss,NN,NN,NN,1,2,1,NN,3,Foralltrainingdata,=1,FindthenetworkparametersthatminimizetotallossL,TotalLoss:,2,3,FindafunctioninfunctionsetthatminimizestotallossL,ThreeStepsforDeepLearning,DeepLearningissosimple,NeuralNetwork,GradientDescent,1,Compute1,1,0.15,2,Compute2,2,0.05,1,Compute1,1,0.2,0.2,-0.1,0.3,121,=,gradient,GradientDescent,1,Compute1,1,0.15,1,Compute1,0.09,2,Compute2,2,0.05,2,Compute2,0.15,1,Compute1,1,0.2,1,Compute1,0.10,0.2,-0.1,0.3,GradientDescent,Thisisthe“learning”ofmachinesindeeplearning,Evenalphagousingthisapproach.,Ihopeyouarenottoodisappointed:p,Peopleimage,Actually.,Backpropagation,Backpropagation:anefficientwaytocomputeinneuralnetwork,Ref:.tw/tlkagk/courses/MLDS_2015_2/Lecture/DNN%20backprop.ecm.mp4/index.html,ConcludingRemarks,NeuralNetwork,Whatarethebenefitsofdeeparchitecture?,DeeperisBetter?,Seide,Frank,GangLi,andDongYu.ConversationalSpeechTranscriptionUsingContext-DependentDeepNeuralNetworks.Interspeech.2011.,Notsurprised,moreparameters,betterperformance,UniversalityTheorem,Referenceforthereason:,Anycontinuousfunctionf,Canberealizedbyanetworkwithonehiddenlayer,(givenenough
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 瓣膜置换的围术期护理
- 人教A版 (2019)选择性必修 第一册3.2 双曲线获奖教案
- 2024中铝共享服务(天津)有限公司校园招聘1人笔试参考题库附带答案详解
- 凤仙花的一生(教学设计)-2024-2025学年科学三年级下册人教鄂教版
- 人教部编版一年级下册20 咕咚第2课时教学设计
- 人教版(2024)八年级上册(2024)第4节 眼睛和眼镜教案
- 2024中建一局二级公司总工程师公开竞聘1人笔试参考题库附带答案详解
- 钉钉使用详尽培训
- 2024中国邮政福建建省分公司校园招聘预笔试参考题库附带答案详解
- 人美版三年级下册第3课 竖弯钩教案及反思
- 中国高职院校毕业生薪酬报告(2024年度)
- 2025-2030中国团餐行业市场发展现状分析及发展前景与投资机会研究报告
- 2025年福建泉州交发集团(第一批)校园招聘72人笔试参考题库附带答案详解
- IT系统架构规划与设计手册
- 口腔门诊6S管理
- 沉浸式体验活动设计合同
- 档案档案管理基础知识试题及答案
- 2025-2030中国金红石发展现状及未来趋势研究报告
- 2025-2030中国慢性腰痛治疗行业市场现状供需分析及投资评估规划分析研究报告
- 演出经纪人与文化经济试题
- pcb抄板合同范例
评论
0/150
提交评论