已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学上册复习要点一、 函数与极限(一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数;4、 函数的连续性与间断点;函数在连续 第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论.(二) 极限1、 定义1) 数列极限 2) 函数极限左极限: 右极限:2、 极限存在准则1) 夹逼准则:1)2) 2) 单调有界准则:单调有界数列必有极限.3、 无穷小(大)量1) 定义:若则称为无穷小量;若则称为无穷大量.2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、阶无穷小Th1 ;Th2 (无穷小代换)4、 求极限的方法1) 单调有界准则;2) 夹逼准则;3) 极限运算准则及函数连续性;4) 两个重要极限:a) b) 5) 无穷小代换:()a)b)c) ()d) ()e)二、 导数与微分(一) 导数1、 定义:左导数: 右导数:函数在点可导2、 几何意义:为曲线在点处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义;2) 基本公式;3) 四则运算;4) 复合函数求导(链式法则);5) 隐函数求导数;6) 参数方程求导;7) 对数求导法.5、 高阶导数1) 定义:2) Leibniz公式:(二) 微分1) 定义:,其中与无关.2) 可微与可导的关系:可微可导,且三、 微分中值定理与导数的应用(一) 中值定理1、 Rolle罗尔定理:若函数满足:1); 2); 3);则.2、 Lagrange拉格朗日中值定理:若函数满足:1); 2);则.3、 Cauchy柯西中值定理:若函数满足:1); 2);3)则(二) 洛必达法则(三) Taylor公式(四) 单调性及极值1、 单调性判别法:,则若,则单调增加;则若,则单调减少.2、 极值及其判定定理:a) 必要条件:在可导,若为的极值点,则.b) 第一充分条件:在的邻域内可导,且,则若当时,当时,则为极大值点;若当时,当时,则为极小值点;若在的两侧不变号,则不是极值点.c) 第二充分条件:在处二阶可导,且,则若,则为极大值点;若,则为极小值点.3、 凹凸性及其判断,拐点1)在区间I上连续,若,则称在区间I 上的图形是凹的;若,则称在区间I 上的图形是凸的.2)判定定理:在上连续,在上有一阶、二阶导数,则 a) 若,则在上的图形是凹的; b) 若,则在上的图形是凸的.3)拐点:设在区间I上连续,是的内点,如果曲线经过点时,曲线的凹凸性改变了,则称点为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;3、 利用极值(最值).(六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性.(七) 渐近线1、 铅直渐近线:,则为一条铅直渐近线;2、 水平渐近线:,则为一条水平渐近线;四、 不定积分(一) 概念和性质1、 原函数:在区间I上,若函数可导,且,则称为的一个原函数.2、 不定积分:在区间I上,函数的带有任意常数的原函数称为在区间I上的不定积分.3、 基本积分表(P188,13个公式);4、 性质(线性性). (二) 换元积分法1、 第一类换元法(凑微分):2、 第二类换元法(变量代换:三角代换、倒代换、根式代换等):(三) 分部积分法:(反对幂指三,前U后V)(四) 有理函数积分 1、“拆”; 2、变量代换(三角代换、倒代换、根式代换等).五、 定积分(一) 概念与性质:1、 定义:2、 性质:(7条)性质7 (积分中值定理) 函数在区间上连续,则,使 (平均值:)(二) 微积分基本公式(NL公式)1、 变上限积分:设,则推广:2、 NL公式:若为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年自动预拉伸型缠绕包装机项目可行性研究报告
- DuP-532-生命科学试剂-MCE
- 企业与主播合同范例
- 2024年聚氨酯乳液SPU项目可行性研究报告
- 2024年纸塑复合袋纸袋机项目可行性研究报告
- 苹果订购合同范例
- 山东商务职业学院《食品质量与安全专业导论》2023-2024学年第一学期期末试卷
- 果园转让 中介合同范例
- 商业项目广告合同范例
- 南宁造粒机采购合同范例
- 提醒谈话文本记录六篇
- 企业信息管理考试试题含答案
- 整合后的山西煤矿名单
- 2023年电大财务报表分析形考鞍钢偿债能力分析
- 台达变频器说明书
- 企业民主管理规定总工发
- 2023年汕头市潮阳区政务中心综合窗口人员招聘笔试题库及答案解析
- GB/T 39069-2020商务楼宇等级划分要求
- GB/T 21238-2007玻璃纤维增强塑料夹砂管
- 五年级上册英语试题- unit1 Did you come back yesterday- 外研社(含答案)
- GB/T 16571-2012博物馆和文物保护单位安全防范系统要求
评论
0/150
提交评论