已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自变量x和因变量y有如下关系: y=kx+b (k为任意不为零实数,b为任意实数) 则此时称y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。 即:y=kx (k为任意不为零实数) 定义域:自变量的取值范围,自变量的取值应使函数有意义;若与实际相反, 。 一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k0) (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 形。取。象。交。减 一次函数的图像及性质 1作法与图形:通过如下3个步骤 (1)列表一般取两个点,根据两点确定一条直线; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3函数不是数,它是指某一变量过程中两个变量之间的关系。 4k,b与函数图像所在象限: y=kx时 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 y=kx+b时: 当 k0,b0, 这时此函数的图象经过一,二,三象限。 当 k0,b0, 这时此函数的图象经过一,三,四象限。 当 k0,b0, 这时此函数的图象经过二,三,四象限。 当 k0, 这时此函数的图象经过一,二,四象限。 当b0时,直线必通过一、二象限; 当b0时,直线必通过三、四象限。 特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 4、特殊位置关系 当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等 当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1) 确定一次函数的表达式 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b 和 y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 一次函数在生活中的应用 1.当时间t一定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 常用公式(不全,希望有人补充) 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:(x1-x2)2+(y1-y2)2 (注:根号下(x1-x2)与(y1-y2)的平方和) 5.求两一次函数式图像交点坐标:解两函数式 两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标 6.求任意2点所连线段的中点坐标:(x1+x2)/2,(y1+y2)/2 7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0) k b + + 在一、二、三象限 + - 在一、三、四象限 - + 在一、二、四象限 - - 在二、三、四象限 8.若两条直线y1=k1x+b1y2=k2x+b2,那么k1=k2,b1b2 9.如两条直线y1=k1x+b1y2=k2x+b2,那么k1k2=-1 应用 一次函数y=kx+b的性质是:(1)当k0时,y随x的增大而增大;(2)当k0时,y随x的增大而减小。利用一次函数的性质可解决下列问题。 一、确定字母系数的取值范围 例1. 已知正比例函数 ,则当m=_时,y随x的增大而减小。 解:根据正比例函数的定义和性质,得 且my2,则x1与x2的大小关系是( ) A. x1x2 B. x10,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2。故选A。 三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb0,知k、b同号。因为y随x的增大而减小,所以k0。所以b0时,它的图像(除原点外)在第一、三象限,y随x的增大而增大 当k0),此时的y与x,同时扩大,同时缩小,比值不变例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例? 以上各种商都是一定的,那么被除数和除数 所表示的两种相关联的量,成正比例关系 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系 定义与定义式 自变量x和因变量y有如下关系: y=kx (k为任意不为零实数) 或y=kx+b (k为任意不为零实数,b为任意实数) 则此时称y是x的一次函数。 特别的,当b=0时,y是x的正比例函数。正比例是?Y=kx+b?。 即:y=kx (k为任意不为零实数) 定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。编辑本段一次函数的性质 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k0) (k为任意不为零的实数 b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 3.k为一次函数y=kx+b的斜率,k=tg角1(角1为一次函数图象与x轴正方向夹角) 形。取。象。交。减 4.正比例函数也是一次函数. 5.当k相同,图像平行;当k不同,图像相交编辑本段一次函数的图像及性质 1作法与图形:通过如下3个步骤 (1)列表一般取两个点,根据两点确定一条直线; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3函数不是数,它是指某一变量过程中两个变量之间的关系。 4k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比) 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 y=kx+b时: 当 k0,b0, 这时此函数的图象经过一,二,三象限。 当 k0,b0, 这时此函数的图象经过一,三,四象限。 当 k0, 这时此函数的图象经过一,二,四象限。 当 k0,b0时,y随x的增大而增大;(2)当k0时,y随x的增大而减小。利用一次函数的性质可解决下列问题。 一、确定字母系数的取值范围 例1. 已知正比例函数 ,则当k0_时,y随x的增大而减小。 解:根据正比例函数的定义和性质,得 且my2,则x1与x2的大小关系是( ) A. x1x2 B. x10,且y1y2。根据一次函数的性质“当k0时,y随x的增大而增大”,得x1x2。故选A。 三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb0,知k、b同号。因为y随x的增大而减小,所以k0。所以b30时,Y1Y2 当X30时,Y1b=1+kk/b=-3/4 -k/1+k=-3/4 -4k=3+3k -7k=-3 -k=-3/7代入b=1+k,得:b=1-3/7=4/7 已知一次函数y=kx+b(k0)的图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Grid Coffee品牌介绍模版
- 二年级品德与社会下册 向人民英雄敬礼教案1 未来版
- 2024年高中生物 第2章 动物和人体生命活动的调节 第2节 通过激素的调节(Ⅱ)教案 新人教版必修3
- 2023七年级生物下册 第四单元 生物圈中的人 第11章 人体代谢废物的排出11.1 人体产生的代谢废物教案 (新版)北师大版
- 2024-2025学年高中化学 第1章 第3节 原子结构与元素性质 第1课时 电离能及其变化规律教案 鲁科版选修3
- 2024-2025学年高中语文 3 柳子厚墓志铭教案 语文版选修《唐宋八大家散文鉴赏》
- 告别母校 课件
- 亡羊补牢图片 课件
- 应急预案备案管理制度
- 第一单元(复习)-三年级语文上册单元复习(统编版)
- 媒介伦理及规范案例教学演示文稿
- 混凝土有限公司安全管理工作责任追究制度
- 人教版三年级数学上册“倍的认识”作业设计
- 大数据可视化知到章节答案智慧树2023年浙江大学
- 学校教师招聘公告 中学招聘老师公告(四篇)
- 市政工程项目部管理制度及岗位职责
- 遥感技术及其应用(48张ppt)
- 第9章-庭院生态工程
- 《特殊儿童早期干预》教学大纲
- 初中化学鲁教版九年级下册化学与健康单元复习
- GB/T 5456-2009纺织品燃烧性能垂直方向试样火焰蔓延性能的测定
评论
0/150
提交评论