数学北师大版九年级上册一元二次方程系数不为一的方程的解法.2 用配方法求解一元二次方程(二).doc_第1页
数学北师大版九年级上册一元二次方程系数不为一的方程的解法.2 用配方法求解一元二次方程(二).doc_第2页
数学北师大版九年级上册一元二次方程系数不为一的方程的解法.2 用配方法求解一元二次方程(二).doc_第3页
数学北师大版九年级上册一元二次方程系数不为一的方程的解法.2 用配方法求解一元二次方程(二).doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 一元二次方程用配方法求解一元二次方程(二)渠县有庆中学 张力一、学生知识状况分析学生的知识技能基础:初二上学期,学生已经学习过开平方根的定义以及完全平方公式,在上节课学生初步学习了配方法解二次项系数为1的一元二次方程,这些为本节课学习解二次项系数不为1的方程打下较好的基础。学生活动经验基础:上一课时,学生已经经历了二次项系数为1的方程的解的过程,已经体会到其中转化的思想方法,这些都成为完成本课任务的活动经验基础。二、教学任务分析在课程安排上这节课的具体学习任务:用配方法解二次项系数不为1的一元二次方程以及利用一元二次方程解决实际问题。这节课内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,为此,本节课的教学目标是:经历配方法解一元二次方程的过程,获得解二元一次方程的基本技能;经历用配方法解二次项系数不为1的一元二次方程的过程,体会其中的化归思想;能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.三、教学过程分析本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。第一环节 复习回顾活动内容:回顾配方法解二次项系数为1的一元二次方程的基本步骤。活动目的:回顾配方法的基本步骤,为本节课研究二次项系数不为1的二次方程的解法打下基础。实际效果:教学中为了便于学生回顾,可以通过举例的形式,帮助学生回顾并整理步骤,例如,x2-6x-40=0移项,得 x2-6x= 40方程两边都加上32(一次项系数一半的平方),得 x2-6x+32=40+32即 (x-3)2=49开平方,得 x-3 =7即 x-3=7或x-3=-7所以 x1=10,x2=-4学生一般都能整理出配方法解方程的基本步骤:通过对这个方程基本步骤地熟悉学生们顺畅的理清思路,掌握了每一步的理论依据,增强了解题的信心,达到预期的目的。配方法的两节课连贯性强,作为一种新的方法,学生在新授期间应多接触,熟练掌握基本的步骤,掌握每一步的原理,这样会增强学生对这个知识点的驾驭能力。一般的一元二次方程配方解法的步骤(移项,配方,开平方,求解)及注意事项。移项的目的是将二次项和一次项调整到等号的左边,常数项调整到右边;配方是将方程的两边添加一个常数项(一次项系数一半的平方)原理是根据公式a2abb(ab)进行的;开平方的原理是平方根的定义,需要注意一个正数有两个平方根,它们是互为相反数;求解的过程是解两个一元一次方程,要注意符号的变化。第二环节:探究思路活动内容:提出问题问题1: 你能用配方法解方程3x2+8x-3=0吗? 提出这个问题的目的是为了体会与之前所解方程的不一样,从而思考这个方程该怎么办?如果学生不能解,从而提出如下问题;如果能解,再总结方法. 问题2:观察下面两组方程有什么不一样?1.x2+8x-9=0 x2+12x-15=02.4x2-x-5=0 3x2+8x-3=0 这个问题请同学们思考,大多数学生应该能够发现不一样的地方,那么就能引出下面问题,继续思路的探究. 问题3:当二次项系数不为1时,能否转化为1,使方程成为我们能解的方程? 又学生独立思考总结规律. 最后教师总结规律: 如果方程的系数不是1,我们可以在方程的两边同时除以二次项系数,这样就将方程转化为可以利用上节课学过的知识解决的方程了! 第三环节:例题精讲活动内容1:讲解例2例2 解方程3x2+8x-3=0解:略 同学们试着解一解,老师再讲解.活动内容2:提出问题. 同学们,你能归纳出配方法解一元二次方程的基本步骤吗? 先由学生自己总结,老师再集体订正.第四环节:习题训练活动内容:随堂练习解下列方程1) 4x2-8x-3=02) 2x2+6=7x3) 3x2-9x+2=0抽几位同学到黑板上演练,余下的同学在草稿本上完成.做到及时反馈,及时巩固的目的.第五环节:实际应用活动内容:做一做做一做:一小球以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(S)满足关系:h=15t-5t2,小球何时能达到10米的高度?解:根据题意得 15t-5t2=10方程两边都除以-5,得 t2-3t=-2配方,得活动目的:在前边学习的基础上,通过例3进一步提高学生分析问题,解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。实际效果:大部分学生通过独立思考,根据题意很快列出了方程,解方程的过程比较顺畅,最终得到两个时间t的值分别为1和2,根据实际情景怎样理解这两个时间呢?这就是很好的数学应用,体现数学的价值,很多学生能想象出当时间为1秒时,小球上升到离出发点10米的地方,当时间为2秒钟时,小球是处于下降状态,离出发点也是10米,激发了学生学习数学的热情。第六环节:课堂小结活动内容:1.学生总结解一元二次方程的基本步骤;2.利用一元二次方程解决实际问题的思路,对于结果的理解。活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想。实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。第六环节:布置作业课本42页习题2.4第1题;一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱)与年龄x(岁)大致满足关系:p=0.01x2+0.05x+107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少?有能力的同学请课余时间用配方法交流探究方程: ax2+bx+c=0 (a不为0)的解法.四、教学反思1、创造性的使用了教材:这节课作为配方的第二节主要是以习题训练为重点,所以我依照书上的例题为重点展示了解方程的基本步骤,另外,添加了辅助性的3个习题;将书上的做一做转化成一个例题,让学生体会利用一元二次方程解决问题的感受;另在作业中配套了一道血压方面的数学问题,学生可以体会到一元二次方程与我们的现实生活息息相关。2、注意改进的方面基础较好的学生对于基础性的计算比较快,与此同时,班级中的有78名学生对于数据计算有懒惰的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论