乘用车制动系统设计论文_第1页
乘用车制动系统设计论文_第2页
乘用车制动系统设计论文_第3页
乘用车制动系统设计论文_第4页
乘用车制动系统设计论文_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!摘 要现代汽车事业的发展日益壮大,使得人们对于汽车的要求越来越大,相对应的人们对于汽车的各个部分的要求也越来越大。然而随着,带来的安全问题也越来越引起人们的注意,而制动系统则是汽车主动安全的重要系统之一。从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着汽车保有量的增加,车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。因此,如何开发出高性能的制动系统,为安全行驶提供更高的保障。本文在绪论中阐述了乘用车制动系统设计的目的和意义、发展状况以及应用前景。接着分析论证了制动系统设计的总体方案,对其鼓式制动器及盘式制动器的选取进行了详细说明论述。还包括制动主缸分路系统的选取方案分析和选择进行了分析。对制动系统及驱动机构进行了分析和计算,最后并对制动性能进行了计算表明制动性能满足要求。关键词:制动;鼓式制动器;盘式制动器;制动主缸;管路布置优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!ABSTRACTThe development of modern automobile business growing, make people more and more the requirement for a car, corresponding people for the car parts of the requirements are increasingly large. However, with security problems, bring more and more is also arouse peoples attention, and brake system is the important system car one of active safety. Born from cars, braking system plays in the vehicles safety aspects will play a crucial role. In recent years, with the increase of auto possession, vehicle technology progress and vehicle speed increase, this importance played more and more apparent. Therefore, how to develop high-performance braking system for safe driving provide higher security. This paper expounded in the introduction of passenger car brake system design of purpose and meaning, development situation and application prospect. Then the paper analysis the braking system design, the overall scheme of the drum brake disc brake and the selection of discussed a detailed illustration. Also includes braking monitor system, the selection of main cylinder scheme analysis and choice are analyzed. For brake system and driving mechanism is analyzed and calculated, the last of brake performance and the calculation shows that the braking performance meet the requirements. Keywords: brake; Drum brake; Disc brakes; Braking main cyli;Pipeline layout优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!目 录摘要 .IAbstract.II第 1 章 绪论 .11.1 制动系统介绍 .11.2 制动系统发展现状 .21.3 制动系统设计的目的及意义 .31.4 设计主要内容 .4第 2 章 设计方案的确定 .52.1 制动器简介 .52.1.1 鼓式制动器介绍 .52.1.2 盘式制动器介绍 .72.1.3 制动器的选择 .82.2 制动驱动机构 .92.2.1 简单制动系 .92.2.2 动力制动系 .92.2.3 伺服制动系 .102.3 分路系统的形式选择 .102.4 制动主缸的选取 .122.5 本章小结 .12第 3 章 制动系统设计 .143.1 设计主要参数 .143.2 同步附着系数的选择 .143.3 制动器有关计算 .143.3.1 确定前后轴制动力矩分配系数 .143.3.2 制动器制动力矩确定 .153.3.3 后轮制动器的结构参数及摩擦系数的选取 .153.3.4 前轮盘式制动器主要参数选定 .163.4 制动器有关计算 .17优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!3.5 制动器主要零部件的选定 .183.5.1 制动盘选定 .183.5.2 制动钳选定 .183.5.3 制动块选定 .183.5.4 摩擦材料选定 .183.5.5 制动鼓选定 .183.5.6 制动蹄选定 .193.5.7 制动底板选定 .193.5.8 制动蹄支承选定 .193.5.9 制动轮缸选定 .193.6 本章小结 .20第 4 章 制动驱动机构的设计计算 .214.1 后轮制动轮缸直径与工作容积的设计计算 .214.2 前轮盘式制动器驱动机构计算 .214.3 制动主缸与工作容积设计计算 .224.4 制动踏板力与踏板行程 .234.4.1 制动踏板力 .234.4.2 制动踏板行程 .234.5 本章小结 .24第 5 章 制动性能分析及校核 .255.1 概述 .255.2 制动效能及制动性能评价指标 .255.3 摩擦衬片的磨损计算 .255.4 制动距离计算 .275.5 制动减速度计算 .275.6 驻车制动计算 .28结论 .29参考文献 .30致谢 .31附录 .32优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!第 1 章 绪 论1.1 制动系统介绍汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置统称为制动系统。汽车制动系是用以强制行驶中的汽车减速或停车、使下坡行驶的汽车车速保持稳定以及使已停驶的汽车在原地(包括在斜坡上)驻留不动的机构。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。随着高速公路的迅速发展和车速的提高以及车流密度的日益增大,为了保证行车安全,汽车制动系的工作可靠性显得日益重要。也只有制动性能良好、制动系工作可靠的汽车,才能充分发挥其动力性能。汽车制动系至少应有两套独立的制动装置,即行车制动装置和驻车制动装置;重型汽车或经常在山区行驶的汽车要增设应急制动装置及辅助制动装置;牵引汽车应有自动制动装置。 行车制动装置用作强制行驶中的汽车减速或停车,并使汽车在下短坡时保持适当的稳定车速。其驱动机构常采用双回路或多回路结构,以保证其工作可靠。驻车制动装置用于使汽车可靠而无时间限制地停驻在一定位置甚至斜坡上,它也有助于汽车在坡路上起步。驻车制动装置应采用机械式驱动机构而不用液压或气压式的,以免其产生故障。应急制动装置用于当行车制动装置意外发生故障而失效时,则可利用应急制动装置的机械力源(如强力压缩弹簧)实现汽车制动。应急制动装置不必是独立的制动系统,它可利用行车制动装置或驻车制动装置的某些制动器件。应急制动装置也不是每车必备,因为普通的手力驻车制动器也可以起应急制动的作用。辅助制动装置用于山区行驶的汽车上,利用发动机排气制动、电涡流或液力缓速器等辅助制动装置,则可使汽车下长坡时长时间而持续地减低或保持稳定车速并减轻或解除行车制动器的负荷。通常,在总质量为 5t 以上的客车上和 12t 以上的载货汽车上装备这种辅助制动减速装置。自动制动装置用于当挂车与牵引汽车连接的制动管路渗漏或断开时,能使挂车自动制动。任何一套制动装置均由制动器和制动驱动机构两部分组成。制动器有鼓式与盘式之分。行车制动是用脚踩下制动踏板操纵车轮制动器来制动全部车轮,而驻车制动则多采用手制动杆操纵,且具有专门的中央制动器或利用车轮制动器进行制动。中央制动器位于变速器之后的传动系中,用于制动变速器第二轴或传动轴。行车制动和驻车制动这两套制动装置必须具有独立的制动驱动机构。行车制动装优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!置的驱动机构,分液压和气压两种型式。用液压传递操纵力时还应有制动主缸和制动轮缸以及管路;用气压操纵时还应有空气压缩机、气路管道、贮气筒、控制阀和制动气室等。过去,大多数汽车的驻车制动和应急制动都使用中央制动器,其优点是制动位于主减速器之前的变速器第二轴或传动轴的制动力矩较小,容易满足操纵手力小的要求。但在用作应急制动时,往往使传动轴超载。现代汽车由于车速提高,对应急制动的可靠性要求更严,因此,在中、高级轿车和部分总质量在 1.5t 以下的载货汽车上,多在后轮制动器上附加手操纵的机械式驱动机构,使之兼起驻车制动和应急制动的作用,从而取消了中央制动器。重型载货汽车由于采用气压制动,故多对后轮制动器另设独立的由气压控制而以强力弹簧作为制动力源的应急兼驻车制动驱动机构,不再设置中央制动器。但也有一些重型汽车除了采用了上述措施外,还保留了由气压驱动的中央制动器,以便提高制动系的可靠性。汽车是现代交通工具中用得最多,最普遍,也是最方便的交通运输工具。汽车制动系是汽车底盘上的一个重要系统,它是制约汽车运动的装置。而制动器又是制动系中直接作用制约汽车运动的一个关健装置,是汽车上最重要的安全件。汽车的制动性能直接影响汽车的行驶安全性。1.2 制动系统发展现状从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。汽车制动系统种类很多,形式多样。传统的制动系统结构型式主要有机械式、气动式、液压式、气液混合式。它们的工作原理基本都一样,都是利用制动装置,用工作时产生的摩擦热来逐渐消耗车辆所具有的动能,以达到车辆制动减速,或直至停车的目的。伴随着节能和清洁能源汽车的研究开发,汽车动力系统发生了很大的改变,出现了很多新的结构型式和功能形式。新型动力系统的出现也要求制动系统结构型式和功能形式发生相应的改变。已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结构更加简洁,功能更加全面和可靠,制动系统的管理也成为必须要面对的问题,电子技术的应用是大势所趋。车辆在行驶过程中要频繁进行制动操作,由于制动性能的好坏直接关系到交通和人身安全,因此制动性能是车辆非常重要的性能之一,改善汽车的制动性能始终是汽车设计制造和使用部门的优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!重要任务。当车辆制动时,由于车辆受到与行驶方向相反的外力,所以才导致汽车的速度逐渐减小至零。对这一过程中车辆受力情况的分析有助于制动系统的分析和设计,因此制动过程受力情况分析是车辆试验和设计的基础。目前,对于整车制动系统的研究主要通过路试或台架进行。制动系的试验均通过间接测量来进行汽车在道路上行驶,其车轮与地面的作用力是汽车运动变化的根据,在汽车道路试验中,如果能够方便地测量出车轮上扭矩的变化,则可为汽车整车制动系统性能研究提供更全面的试验数据和性能评价。1.3 制动系统设计的目的及意义当今社会已经普遍应用的液压制动现在已经是非常成熟的技术,随着人们对制动性能要求的提高,防抱死制动系统、驱动防滑控制系统、电子稳定性控制程序、主动避撞技术等功能逐渐融人到制动系统当中,需要在制动系统上添加很多附加装置来实现这些功能,这就使得制动系统结构复杂化,增加了液压回路泄漏的可能以及装配、维修的难度,制动系统要求结构更加简洁,功能更加全面和可靠。因此设计的制动系统必须要具有良好的制动效能以及良好的制动效能的稳定性和制动时汽车操纵稳定性好和制动效能的热稳定性好。这些都是需要考虑的问题。(1)具有足够的制动效能,包括行车制动效能和驻坡制动效能。 行车制动效能是用在一定的制动初速度下或最大踏板力下的制动减速度和制动距离两项指标来评定,它是制动性能最基本的评价指标。(2)工作可靠。汽车至少应有行车制动和驻车制动两套制动装置,且它们的制动驱动机构应是各自独立的。行车制动装置的制动驱动机构至少应有两套独立的管路,当其中一套失效时,另一套应保证汽车制动效能不低于正常值的30%;驻车制动装置应采用工作可靠的机械式制动驱动机构。(3)制动效能的热稳定性好。汽车的高速制动、短时间内的频繁重复制动,尤其是下长坡时的连续制动,都会引起制动器的温升过快,温度过高。特别是下长坡时的频繁制动,可使制动器摩擦副的温度达300400,有时甚至高达700。此时,制动摩擦副的摩擦系数会急剧减小,使制动效能迅速下降而发生热衰退现象。制动器发生热衰退后,经过散热、降温和一定次数的和缓使用使摩擦表面得到磨合,其制动效能可重新恢复,这称为热恢复。提高摩擦材料的高温摩擦稳定性,增大制动鼓、盘的热容量,改善其散热性或采用强制冷却装置,都是提高抗热衰退的措施。(4)制动效能的水稳定性好。制动器摩擦表面浸水后,会因水的润滑作用使摩擦系数急剧减小而发生所谓的“水衰退”现象。一般规定在出水后反复制动515次,即应恢复其制动效能。良好的摩擦材料吸水率低,其摩擦性能恢复迅速。也应防止泥优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!沙、污物等进入制动器工作表面,否则会使制动效能降低并加速磨损。(5)制动时的操纵稳定性好。即以任何速度制动,汽车都不应当失去操纵性和方向稳定性。一般要求在进行制动效能试验时,车辆的任何部位不得偏出3.7m的试验道。为此,汽车前、后轮制动器的制动力矩应有适当的比例,最好能随各轴间载荷转移情况而变化;同一轴上左、右车轮制动器的制动力矩应相同。否则当前轮抱死而侧滑时,将失去操纵性;后轮抱死而侧滑甩尾,会失去方向稳定性;当左、右轮的制动力矩差值超过15%时,会发生制动时汽车跑偏。1.4 设计主要内容(1)制动系统方案的选择(2)制动系统设计计算(3)制动系统驱动机构的设计计算(4)制动性能的分析优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!第 2 章 设计方案的确定2.1 制动器简介制动器是具有使运动部件(或运动机械)减速、停止或保持停止状态等功能的装置。是使机械中的运动件停止或减速的机械零件。俗称刹车、闸。制动器主要由制架、制动件和操纵装置等组成。有些制动器还装有制动件间隙的自动调整装置。为了减小制动力矩和结构寸制动器通常装在设备的高速轴上,但对安全性要求较高的大型设备(如矿井提升机、电梯等)则应装在靠近设备工作部分的低速轴上。汽车制动器几乎均为机械摩擦式,即利用旋转元件与固定元件两工作表面间的摩擦产生的制动力矩使汽车减速或停车。一般摩擦式制动器按其旋转元件的形状分为鼓式和盘式两大类。2.1.1 鼓式制动器介绍鼓式制动器是最早形式的汽车制动器,当盘式制动器还没有出现前,它已经广泛用干各类汽车上。典型的鼓式制动器主要由底板、制动鼓、制动蹄、轮缸(制动分泵)、回位弹簧、定位销等零部件组成。底板安装在车轴的固定位置上,它是固定不动的,上面装有制动蹄、轮缸、回位弹簧、定位销,承受制动时的旋转扭力。每一个鼓有一对制动蹄,制动蹄上有摩擦衬片。制动鼓则是安装在轮毂上,是随车轮一起旋转的部件,它是由一定份量的铸铁做成,形状似园鼓状。当制动时,轮缸活塞推动制动蹄压迫制动鼓,制动鼓受到摩擦减速,迫使车轮停止转动。在汽车制动鼓上,一般只有一个轮缸,在制动时轮缸受到来自总泵液力后,轮缸两端活塞会同时顶向左右制动蹄的蹄端,作用力相等。但由于车轮是旋转的,制动鼓作用于制动蹄的压力左右不对称,造成自行增力或自行减力的作用。因此,业内将自行增力的一侧制动蹄称为领蹄,自行减力的一侧制动蹄称为从蹄,领蹄的摩擦力矩是从蹄的 22.5 倍,两制动蹄摩擦衬片的磨损程度也就不一样。为了保持良好的制动效率,制动蹄与制动鼓之间要有一个最佳间隙值。随着摩擦衬片磨损,制动蹄与制动鼓之间的间隙增大,需要有一个调整间隙的机构。过去的鼓式制动器间隙需要人工调整,用塞尺调整间隙。现在轿车鼓式制动器都是采用自动调整方式,摩擦衬片磨损后会自动调整与制动鼓间隙。当间隙增大时,制动蹄推出量超过一定范围时,调整间隙机构会将调整杆拉到与调整齿下一个齿接合的位置,从而增加连杆的长度,使制动蹄位置位移,恢复正常间隙。鼓式制动器分为内张型鼓式制动器和外束型鼓式制动器两种结构型式。内张型鼓式制动器的摩擦元件是一对带有圆弧形摩擦蹄片的制动蹄,后者则安装在制动底板上,而制动底板则紧固在前桥的前梁或后桥桥壳半袖套管的凸缘上,其旋转的摩擦元件为优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!制动鼓。车轮制动器的制动鼓均固定在轮鼓上。制动时,利用制动鼓的圆柱内表面与制动蹄摩擦路片的外表面作为一对摩擦表面在制动鼓上产生摩擦力矩,故又称为蹄式制动器。外束型鼓式制动器的固定摩擦元件是带有摩擦片且刚度较小的制动带,其旋转摩擦元件为制动鼓,并利用制动鼓的外因柱表面与制动带摩擦片的内圆弧面作为一对摩擦表面,产生摩擦力矩作用于制动鼓,故又称为带式制动器。在汽车制动系中,带式制动器曾仅用作一些汽车的中央制动器,但现代汽车已很少采用。所以内张型鼓式制动器通常简称为鼓式制动器,通常所说的鼓式制动器就是指这种内张型鼓式结构。鼓式制动器按蹄的类型分为:1.领从蹄式制动器领从蹄式制动器的每块蹄片都有自己的固定支点,而却两固定支点位于两蹄的同一端。汽车倒车时制动鼓的旋转方向变为反向旋转,则相应地使领蹄与从蹄也就相互对调了。这种当制动鼓正、反方向旋转时总具有一个领蹄和一个从蹄的内张型鼓式制动器称为领从蹄式制动器。领蹄所受的摩擦力使蹄压得更紧,即摩擦力矩具有“增势”作用,故又称为增势蹄;而从蹄所受的摩擦力使蹄有离开制动鼓的趋势,即摩擦力矩具有“减势”作用,故又称为减势蹄。 “增势”作用使领蹄所受的法向反力增大,而“减势”作用使从蹄所受的法向反力减小。领从蹄式制动器的效能及稳定性均处于中等水平,但由于其在汽车前进与倒车时的制动性能不变,且结构简单,造价较低,也便于附装驻车制动机构,故这种结构仍广泛用于中、重型载货汽车的前、后轮制动器及轿车的后轮制动器。2.单向双领蹄式制动器单向双领蹄式制动器的两块蹄片各有自己的固定支点,而却两固定支点位于两蹄的不同端。领蹄的固定端在上方,每块蹄片有各自独立的张开装置,且位于与固定支点相对应的一方。汽车前进制动时,这种制动器的制动效能相当高。由于有两个轮缸,故可以用两个各自独立的回路分别驱动两蹄片。除此之外,这种制动器还有易于调整蹄片与制动鼓之间的间隙,两蹄片上的单位压力相等,使之磨损程度相近,寿命相同等优点。单向双领蹄式制动器的制动效能稳定性,仅强于増力式制动器。当倒车制动时,由于两蹄片皆为双从蹄,使制动效能明显下降。与领从蹄式制动器比较,由于多了一个轮缸,使结构略闲复杂。这种制动器适用于前进制动时前轴动轴荷及附着力大于后轴,而倒车时则相反的汽车前轮上。它之所以不用于后轮,还因为两个互相成中心对称的轮缸,难于附加驻优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!车制动驱动机构3.双向双领蹄式制动器当制动鼓正向和反向旋转时,两制动助均为领蹄的制动器则称为双向双领蹄式制动器。它也属于平衡式制动器。由于双向双领蹄式制动器在汽车前进及倒车时的制动性能不变,因此广泛用于中、轻型载货汽车和部分轿车的前、后车轮,但用作后轮制动器时,则需另设中央制动器用于驻车制动。4.双从蹄式制动器双从蹄式制动器的两蹄片各有一个固定支点,而却两固定支点位于两蹄片的不同端,并用各有一个活塞的两轮缸张开蹄片。双从蹄式制动器的制动器效能稳定性最好,但因制动器效能最低,所以很少采用。5.单向增力式制动器单向增力式制动器如图所示两蹄下端以顶杆相连接,第二制动蹄支承在其上端制动底板上的支承销上。由于制动时两蹄的法向反力不能相互平衡,因此它居于一种非平衡式制动器。单向增力式制动器在汽车前进制动时的制动效能很高,且高于前述的各种制动器,但在倒车制动时,其制动效能却是最低的。因此,它仅用于少数轻、中型货车和轿车上作为前轮制动器。6.双向增力式制动器将单向增力式制动器的单活塞式制动轮缸换用双活塞式制动轮缸,其上端的支承销也作为两蹄共用的,则成为双向增力式制动器。对双向增力式制动器来说,不论汽车前进制动或倒退制动,该制动器均为增力式制动器。双向增力式制动器在大型高速轿车上用的较多,而且常常将其作为行车制动与驻车制动共用的制动器,但行车制动是由电磁经制动轮缸产生制动蹄的张开力进行制动,而驻车制动则是用制动操纵手柄通过钢索拉绳及杠杆等机械操纵系统进行操纵。双向增力式制动器也广泛用作汽车的中央制动器,因为驻车制动要求制动器正向、反向的制动效能都很高,而且驻车制动若不用于应急制动时也不会产生高温,故其热衰退问题并不突出。但由于结构问题使它在制动过程中散热和排水性能差,容易导致制动效率下降。因此,在轿车领域上己经逐步退出让位给盘式制动器。但由于成本比较低,仍然在一些经济型车中使用,主要用于制2.1.2 盘式制动器介绍盘式制动器按摩擦副中定位原件的结构不同可分为钳盘式和全盘式两大类。优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!钳盘式制动器的固定摩擦元件是制动块,装在与车轴连接且不能绕车轴轴线旋转的制动钳中。制动衬块与制动盘接触面很小,在盘上所占的中心角一般仅 3050,故这种盘式制动器又为点盘式制动器。全盘式制动器中摩擦副的旋转元件及固定元件均为盘形,制动时各盘摩擦表面全部接触,作用原理如同离合器,故又称离合器式制动器。全盘式中用的较多的是多片全盘式制动器。多片全盘式制动器既可用于车轮制动器,也可用作缓行器。钳盘式制动器按制动钳的结构不同,分为以下几种:(1)钳盘式制动器按制动钳的结构型式又可分为定钳盘式制动器、浮钳盘式制动器等。定钳盘式制动器:这种制动器中的制动钳固定不动,制动盘与车轮相联并在制动钳体开口槽中旋转。具有下列优点:除活塞和制动块外无其他滑动件,易于保证制动钳的刚度;结构及制造工艺与一般鼓式制动器相差不多,容易实现从鼓式制动器到盘式制动器的改革;能很好地适应多回路制动系的要求。浮动盘式制动器:这种制动器具有以下优点:仅在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管加之液压缸冷却条件好,所以制动液汽化的可能性小;成本低;浮动钳的制动块可兼用于驻车制动。(2)全盘式在全盘式制动器中,摩擦副的旋转元件及固定元件均为圆形盘,制动时各盘摩擦表面全部接触,其作用原理与摩擦式离合器相同。由于这种制动器散热条件较差,其应用远没有浮钳盘式制动器广泛。2.1.3 制动器的选择与鼓式制动器比较,盘式制动器有如下优点:(1)热稳定性好.原因是一般无自行増力作用,衬块摩擦表面压力分布较鼓式中的衬片。此外,制动鼓在受热膨胀后,工作半径增大,使其只能与蹄的中部接触,从而降低了制动效能,这称为机械衰退。制动盘的轴向膨胀极小,径向膨胀根本与性能无关,故无机械衰退问题。因此,前轮采用盘式制动器,汽车制动时不易跑偏。(2)水稳定性好。制动块对盘的单位压力高,易于将水挤出,因而浸水后效能降低不多,又由于离心力作用及衬块对盘的擦拭作用,出水后只需经一到两次制动既能恢复正常。鼓式制动器则需经十余次制动方能恢复。(3)制动力矩与汽车运动方向无关。(4)易于构成双回路制动系,使系统有较高的可靠性和安全性。(5)尺寸小,质量小,散热良好。优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!(6)压力在制动衬块上的分布比较均匀,故衬块磨损也可以。(7)更换衬块简单容易。(8)衬块与制动盘之间的间隙小,从而缩短了制动协调时间。(9)易于时间间隙自动调整。综合以上优缺点最终确定本次设计采用前盘后鼓式。前盘选用浮动盘式制动器,后鼓采用领从蹄式制动器。 72.2 制动驱动机构根据制动力原的不同,制动驱动机构可分为简单制动、动力制动以及伺服制动三大类型。而力的传递方式又有机械式、液压式、气压式和气压-液压式的区别。2.2.1 简单制动系简单制动系即人力制动系,是靠司机作用于制动塌板上或手柄上的力作为制动力原。而传力方式有、又有机械式和液压式两种。机械式的靠杆系或钢丝绳传力,其结构简单,造价低廉,工作可靠,但机械效率低,因此仅用于中、小型汽车的驻车制动装置中。液压式的简单制动系通常简称为液压制动系,用于行车制动装置。其优点是作用滞后时间短(o1so3s),工作压力大(可达 10 MPa12MPa),缸径尺寸小,可布置在制动器内部作为制动蹄的张开机构或制动块的压紧机构,使之结构简单、紧凑,质量小、造价低。但其有限的力传动比限制了它在汽车上的使用范围。另外,液压管路在过度受热时会形成气泡而影响传输,即产生所谓“汽阻” ,使制动效能降低甚至失效;而当气温过低时(-25和更低时),由于制动液的粘度增大,使工作的可靠性降低,以及当有局部损坏时,使整个系统都不能继续工作。液压式简单制动系曾广泛用于乘用车、轻型及以下的货车和部分中型货车上。但由于其操纵较沉重,不能适应现代汽车提高操纵轻便性的要求,故当前仅多用于微型汽车上,在乘用车和轻型汽车亡已极少采用。2.2.2 动力制动系动力制动系是以发动机动力形成的气压或液压势能作为汽车制动的全部力源进行制动,而司机作用于制动踏板或手柄上的力仅用于对制动回路中控制元件的操纵。在简单制动系中的踏板力与其行程间的反比例关系在动力制动系中便不复存在,因此,此处的踏板力较小且可有适当的踏板行程。动力制动系有气压制动系、气顶液式制动系和全液压动力制动系 3 种。1)气压制动系气压制动系是动力制动系最常见的型式,由于可获得较大的制动驱动力,且主车优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!与被拖的挂车以及汽车列车之间制动驱动系统的连接装置结构简单、连接和断开均很方便,因此被广泛用于总质量为 8t 以上尤其是 15t 以上的载货汽车、越野汽车和客车上。但气压制动系必须采用空气压缩机、储气筒、制动阀等装置,使其结构复杂、笨重、轮廓尺寸大、造价高;管路中气压的产生和撤除均较慢,作用滞后时间较长(o3so9s),因此,当制动阀到制动气室和储气筒的距离较远时,有必要加设气动的第二级控制元件继动阀(即加速阀)以及快放阀;管路工作压力较低(一般为o5MPao7MPa),因而制动气室的直径大,只能置于制动器之外,再通过杆件及凸轮或楔块驱动制动蹄,使非簧载质量增大;另外,制动气室排气时也有较大噪声。2)气顶液式制动系气顶液式制动系是动力制动系的另一种型式,即利用气压系统作为普通的液压制动系统主缸的驱动力源的一种制动驱动机构。它兼有液压制动和气压制动的主要优点。由于其气压系统的管路短,故作用滞后时间也较短。显然,其结构复杂、质量大、造价高,故主要用于重型汽车上,一部分总质量为 9t11t 的中型汽车上也有所采用。3)全液压动力制动系全液压动力制动系除具有一般液压制动系统的优点外,还具有操纵轻便、制动反应快、制动能力强、受气阻影响较小、易于采用制动力调节装置和防滑移装置,及可与动力转向、液压悬架、举升机构及其他辅助设备共用液压泵和储油罐等优点。但其结构复杂、精密件多,对系统的密封性要求也较高,故并未得到广泛应用,目前仅用于某些高级轿车、大型客车以及极少数的重型矿用自卸汽车上。2.2.3 伺服制动系伺服制动系是在人力液压制动系的基础上加设一套出其他能源提供的助力装置使人力与动力可兼用,即兼用人力和发动机动力作为制功能源的制动系。在正常情况下,其输出工作压力主要出动力伺服系统产生,而在动力伺服系统失效时,仍可全由人力驱动液压系统产生一定程度的制动力。因此,在中级以上的轿车及轻、中型客、货汽车上得到了广泛的应用。按伺服系统能源的不同,又有真空伺服制动系、气压伺服制动系和液压伺服制动系之分。其伺服能源分别为真空能(负气压能)、气压能和液压能。 72.3 分路系统的形式选择为了提高制动驱动机构的工作可靠性,保证行车安全,制动驱动机构至少应有两套独立的系统,即应是双回路系统,也就是说应将汽车的全部行车制动器的液压或气压管路分成两个或更多个相互独立的回路,以便当一个回路发生故障失效时,其他完好的回路仍能可靠地工作。优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!图 2.1 分路系统1.II 型回路介绍前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,简称 II 型。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。这种分路布置方案在各类汽车上均有采用,但在货车上用得最广泛。这一分路方案总后轮制动管路失效,则一旦前轮制动抱死就会失去转弯制动能力。对于前轮驱动的轿车,当前轮管路失效而仅由后轮制动时,制动效能将明显降低并小于正常情况下的一半,另外,由于后桥负荷小于前轴,则过大的踏板力会使后轮抱死而导致汽车甩尾。2.X 型回路介绍后轮制功管路呈对角连接的两个独立的回路系统,即前轴的一侧车轮制动器与后桥的对侧车轮制动器同属于一个回路,称交叉型,简称 X 型。其特点是结构也很简单,一回路失效时仍能保持 50的制动效能,并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。此时前、后各有一侧车轮有制动作用,使制动力不对称,导致前轮将朝制动起作用车轮的一侧绕主销转动,使汽车失去方向稳定性。因此,采用这种分路力案的汽车,其主销偏移距应取负值(至 20 mm),这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性。3.其他型回路介绍左、右前轮制动器的半数轮缸与全部后轮制动器轮缸构成一个独立的回路,而两前轮制动器的另半数轮缸构成另一回路,可看成是一轴半对半个轴的分路型式,简称KI 型。两个独立的问路分别为两侧前轮制动器的半数轮缸和一个后轮制动器所组成,即半个轴与一轮对另半个轴与另一轮的瑚式,简称 LL 型。两个独立的回路均由每个前、后制动器的半数缸所组成,即前、后半个轴对前、优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!后半个轴的分路型式,简称 HH 型。这种型式的双回路系统的制功效能最好。HI、LL、HH 型的织构均较复杂。LL 型与 HH 型在任一回路失效时,前、后制动力的比值均与正常情况下相同,且剩余的总制动力可达到正常值的 50左占。HL 型单用回路,即一轴半时剩余制动力较大,但此时与 LL 型一样,在紧急制动时后轮极易先抱死。 7综合以上各个管路的优缺点最终选择 X 型管路。2.4 制动主缸的选取为了提高汽车的行驶安全性,根据交通法规的要求,一些乘用车的行车制动装置均采用了双回路制动系统。双回路制动系统的制动主缸为串列双腔制动主缸,单腔制动主缸已被淘汰。制动主缸采用串列双腔制动主缸。该主缸相当于两个单腔制动主缸串联在一起而构成。储蓄罐中的油经每一腔的进油螺栓和各自旁通孔、补偿孔流入主缸的前、后腔。在主缸前、后工作腔内产生的油压,分别经各自得出油阀和各自的管路传到前、后制动器的轮缸。主缸不制动时,前、后两工作腔内的活塞头部与皮碗正好位于前、后腔内各自得旁通孔和补偿孔之间。当踩下制动踏板时,踏板传动机构通过制动推杆推动后腔活塞前移,到皮碗掩盖住旁通孔后,此腔油压升高。在液压和后腔弹簧力的作用下,推动前腔活塞前移,前腔压力也随之升高。当继续踩下制动踏板时,前、后腔的液压继续提高,使前、后制动器制动。撤出踏板力后,制动踏板机构、主缸前、后腔活塞和轮缸活塞在各自的回位弹簧作用下回位,管路中的制动液在压力作用下推开回油阀流回主缸,于是解除制动。若与前腔连接的制动管路损坏漏油时,则踩下制动踏板时,只有后腔中能建立液压,前腔中无压力。此时在液压差作用下,前腔活塞迅速前移到活塞前端顶到主缸缸体上。此后,后缸工作腔中的液压方能升高到制动所需的值。若与后腔连接的制动管路损坏漏油时,则踩下制动踏板时,起先只有后缸活塞前移,而不能推动前缸活塞,因后缸工作腔中不能建立液压。但在后腔活塞直接顶触前缸活塞时,前缸活塞前移,使前缸工作腔建立必要的液压而制动。由此可见,采用这种主缸的双回路液压制动系,当制动系统中任一回路失效时,串联双腔制动主缸的另一腔仍能工作,只是所需踏板行程加大,导致汽车制动距离增长,制动力减小。大大提高了工作的可靠性。 6优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!2.5 本章小结本章首先对制动器的形式进行了系统的介绍与对比分析,最终选择了前轮采用浮动盘式制动器,后轮采用领从蹄式鼓式制动器的方案。之后又介绍了制动驱动机构的形式分类及分路系统的形式分类及选择。并对制动主缸的工作原理进行了简单的介绍,使此次设计的整体思路已大体呈现。优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!第 3 章 制动系统设计3.1 设计主要参数整车质量: 空载:1550kg满载:2000kg质心位置: a=1.35m b=1.25m质心高度: 空载:hg=0.95m满载:hg=0.85m轴 距: L=2.6m轮 距: L =1.8m0最高车速: 160km/h车轮工作半径:370mm轮 胎: 195/60R14 85H同步附着系数: =0.603.2 同步附着系数的选择(1)当 时:制动时总是前轮先抱死,这是一种稳定工况,但丧失了转向能0力;(2)当 时:制动时总是后轮先抱死,这时容易发生后轴侧滑而使汽车失去0方向稳定性;(3)当 时:制动时汽车前、后轮同时抱死,是一种稳定工况,但也丧失了0转向能力。分析表明,汽车在同步附着系数为 的路面上制动(前、后车轮同时抱死)时,其制动减速度为 ,即 , 为制动强度。而在其他附着系数 的路gqdtu00q 面上制动时,达到前轮或后轮即将抱死的制动强度 这表明只有在 的路面q0上,地面的附着条件才可以得到充分利用。根据相关资料查出轿车 0.6,故取 =0.6003.3 制动器有关计算优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!3.3.1 确定前后轴制动力矩分配系数 根据公式: (3-1)Lhg02得: 67.85.13.3.2 制动器制动力矩确定由轮胎与路面附着系数所决定的前后轴最大附着力矩:(3-2)egrqhLGM)(1max2式中:该车所能遇到的最大附着系数;q制动强度;车轮有效半径;er后轴最大制动力矩;max2G汽车满载质量;L汽车轴距;其中 q= = =0.66 (3-3)gha)(085.0)67.(35.1故后轴 = =1.57 Nmmmax2M86.351.0 61后轮的制动力矩为 =0.785 Nmm2/760前轴 = T = =0.67/(1-0.67) 1.57 =3.2 Nmmmax1ax1f maxf606前轮的制动力矩为 3.2 /2=1.6 Nmm60613.3.3 后轮制动器的结构参数及摩擦系数的选取1、制动鼓直径 D轮胎规格为 195/60R14 85H 轮辋为 14in 表 3.1 轮辋直径与制动鼓内径参照表轮辋直径/in 12 13 14 15 16轿车 180 200 240 260 -制动鼓内径/mm 货车 220 240 260 300 320优秀本科毕业设计(论文)精品优秀毕业设计,助答辩无忧!查表得制动鼓内径 D =240mm内D =14rm3564.2根据轿车 D/ 在 0.640.74 之间选取r取 D/ =0.7rD=249mm,2、制动蹄摩擦衬片的包角 和宽度 b制动蹄摩擦衬片的包角 在 = 范围内选取。9012取 = 10根据单个制动器总的衬片米厂面积 取 200300A2cm取 A=300 2cmb/D=0.18b=0.18 mm4593、摩擦衬

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论