函数模型及其应用几种不同增长的函数模型课件.ppt_第1页
函数模型及其应用几种不同增长的函数模型课件.ppt_第2页
函数模型及其应用几种不同增长的函数模型课件.ppt_第3页
函数模型及其应用几种不同增长的函数模型课件.ppt_第4页
函数模型及其应用几种不同增长的函数模型课件.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

函数模型及其应用 几种不同增长的函数模型 整理 http www gd 整理 http www gd 例题 例1 假设你有一笔资金用于投资 现有三种投资方案供你选择 这三种方案的回报如下 方案一 每天回报40元 方案二 第一天回报10元 以后每天比前一天多回报10元 方案三 第一天回报0 4元 以后每天的回报比前一天翻一番 请问 你会选择哪种投资方案呢 整理 http www gd 思考 比较三种方案每天回报量 2 比较三种方案一段时间内的总回报量 哪个方案在某段时间内的总回报量最多 我们就在那段时间选择该方案 整理 http www gd 分析 我们可以先建立三种投资方案所对应的函数模型 再通过比较它们的增长情况 为选择投资方案提供依据 解 设第x天所得回报为y元 则方案一 每天回报40元 y 40 x N 方案二 第一天回报10元 以后每天比前一天多回报10元 y 10 x x N 方案三 第一天回报0 4元 以后每天的回报比前一天翻一番 y 0 4 2x 1 x N 整理 http www gd 整理 http www gd 图112 1 从每天的回报量来看 第1 4天 方案一最多 每5 8天 方案二最多 第9天以后 方案三最多 有人认为投资1 4天选择方案一 5 8天选择方案二 9天以后选择方案三 画图 整理 http www gd 累积回报表 结论 投资1 6天 应选择第一种投资方案 投资7天 应选择第一或二种投资方案 投资8 10天 应选择第二种投资方案 投资11天 含11天 以上 应选择第三种投资方案 整理 http www gd 例题的启示 解决实际问题的步骤 实际问题 读懂问题 抽象概括 数学问题 演算 推理 数学问题的解 还原说明 实际问题的解 整理 http www gd 例2 某公司为了实现1000万元利润的目标 准备制定一个激励销售部门的奖励方案 在销售利润达到10万元时 按销售利润进行奖励 且奖金y 单位 万元 随着销售利润x 单位 万元 的增加而增加 但资金数不超过5万元 同时奖金不超过利润的25 现有三个奖励模型 y 0 25x y log7x 1 y 1 002x 其中哪个模型能符合公司的要求呢 整理 http www gd 整理 http www gd 1 由函数图象可以看出 它在区间 10 1000 上递增 而且当x 1000时 y log71000 1 4 55 5 所以它符合奖金不超过5万元的要求 模型y log7x 1 整理 http www gd 令f x log7x 1 0 25x x 10 1000 利用计算机作出函数f x 的图象 由图象可知它是递减的 因此 f x f 10 0 3167 0 即log7x 1 0 25x 所以 当x 10 1000 整理 http www gd 例3 探究函数的增长情况并分析差异 整理 http www gd 1 列表 整理 http www gd 几何画板演示 2 作图 整理 http www gd 结论1 一般地 对于指数函数y ax a 1 和幂函数y xn n 0 通过探索可以发现 在区间 0 上 无论n比a大多少 尽管在x的一定范围内 ax会小xn 但由于ax的增长快于xn的增长 因此总存在一个x0 当x x0时 就会有ax xn 整理 http www gd 结论2 一般地 对于指数函数y logax a 1 和幂函数y xn n 0 通过探索可以发现 在区间 0 上 随着x的增大 logax增大得越来越慢 图象就像是渐渐地与x轴平行一样 尽管在x的一定范围内 logax可能会小xn 但由于logax的增长慢于xn的增长 因此总存在一个x0 当x x0时 就会有logax xn 整理 http www gd 综上所述 1 在区间 0 上 y ax a 1 y logax a 1 和y xn n 0 都是增函数 2 随着x的增大 y ax a 1 的增长速度越来越快 会远远大于y xn n 0 的增长速度 3 随着x的增大 y logax a 1 的增长速度越来越慢 会远远小于y xn n 0 的增长速度 总存在一个x0 当x x0时 就有logax xn ax 整理 http www gd 练习 P981 2 整理 http www gd 小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论