2010届高三数学填空题的解法.ppt_第1页
2010届高三数学填空题的解法.ppt_第2页
2010届高三数学填空题的解法.ppt_第3页
2010届高三数学填空题的解法.ppt_第4页
2010届高三数学填空题的解法.ppt_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

填空题是高考题中客观性题型之一 具有小巧灵活 结构简单 概念性强 运算量不大 不需要写出求解过程而只需直接写出结论等特点 虽然量小 目前多数4个题目 上海 江苏等较多 但考生的得分率较低 不很理想 原因是学生还不能达到对解答填空题的基本要求 正确 合理 迅速 填空题虽小 但跨度大 覆盖面广 形式灵活多样 还可以有目的且有机地综合一些问题 突出训练学生准确 严谨 全面 灵活应用知识的能力和基本运算能力 从填空内容上主 学案23填空题的解法 要分为两类 一类是定量填空 另一类是定性填空 它只要求写出答案 缺少选项提供的目标信息 结果正确与否难以判断 一步失误 全题零分 要想又快又准地答好填空题 基本策略在 巧做 二字上下功夫 填空题和选择题的区别在于 1 填空题没有备选项 因此 解答时既有不受诱误的干扰好处 但又有缺乏提示的帮助不足之处 对考生独立思考和求解 在能力要求上会高一些 2 填空题的结构 往往是在一个正确的命题或断言中 抽去其中的一些内容 既可以是条件 也可以是结论 留下空位 让考生独立填上 考查方式比较灵活 3 在对题目的阅读理解上 有时会显得比选择题劳力 费神 当然并非常常如此 这将取决于命 题者对试题的设计意图 填空题与解答题比较 同属客观性的试题 但也有区别 1 解答题解答时 考生不仅提供出答案 还必须写出解答过程的必要的步骤 填空题则无此要求 只要填写结果 而且所填结果应力求简练 概括和准确 2 试题内涵不同 填空题的考点少 目标集中 而解答题比填空题要丰富得多 填空题解题的基本原则是 小题不能大作 基本策略是 巧做 基本方法一般有 直接求解法 图象法和特殊化法 特殊值法 特殊函数法 特殊角法 特殊数列法 图形特殊位置法 特殊点法 特殊方程法 特殊模型法 等 一 基础知识型填空题这类填空题主要考查课本知识的基本内容 可以对基础知识进行考查 也可以对基础知识加以综合能力的考查 要做好这类题目 对课本的概念 定理 推论 性质 基本公式 基本应用 基本方法等要熟练掌握并能灵活应用 这样应用起来才会得心应手 游刃有余 例如 例1 2008 山东 若不等式 3x b 4的解集中的整数有且仅有1 2 3 则b的取值范围为 解析 3x b 4 4 3x b 4 由题意知 5 b 7 解题探究 在解不等式时 要十分注意不等式性质的灵活运用 还应注意观察 分析所给不等式的形式和结构 据此选取适当的方法和策略 进行有效地变形与整合可速得结论 在解绝对值不等式时 应充分利用绝对值的性质及其几何意义 5 7 练1 已知实数 0 则函数的最小值为 解析因为函数在区间 0 上是单调递减的函数 而在区间 0 是单调递增 且所以在区间 0 上是单调递减的函数 则 f min f 1 3 4 4 解题探究 因为函数 a 0 可用求导法确定其单调区间 又所以 当x 0 0 时 函数f x 递减 当x 函数f x 递增 利用函数的单调性进行求解本题 可速至结论 简单明了 练2 关于函数 x R 有下列命题 由f x1 f x2 0可得x1 x2必为 的整数倍 函数y f x 的表达式可改写为 函数y f x 的图象关于点对称 函数y f x 的图象关于直线对称 其中正确命题的序号为 把你认为正确的命题序号都填上 解析由 据题意可得 k1 k2 Z k1 k2 Z 显然命题 错误 所以命题 正确 所以函数f x 的对称中心坐标为 k Z 则命题 正确 因为当既不是函数的最大值 也不是函数的最小值 根据正弦函数图象的性质可知 命题 错误 答案 解题探究 在解答三角函数的问题时 应熟练掌握并能灵活应用三角函数的性质 如单调性 奇偶性 周期性 对称性 轴对称 中心对称 函数在对称轴上取到最大 小 值 能灵活应用诱导公式 对三角函数的名称进行有目的的变换 已达到方便解题之目的 使问题得以快速 准确解决 二 计算型填空题这类填空题对运算能力要求较高 对数值和代数式的运算不能出现任何的失误 因此 对计算型填空题必须予以认真对待 运算能力是影响整个数学成绩的重要因素 同时还要注意某些运算的技巧 如换元法 消参法 整体代入法等的灵活应用 从而提高解题的速度和质量 例2 如果f x y f x f y 且f 1 2 则 解析令x n y 1 则f n 1 f n f 1 2010 解题探究 本小题考查了抽象函数的有关性质 在解答这类问题时 应首先充分考查 分析该抽象函数所具有的特殊性质 往往采用赋值法去解决 找出其特点 使问题顺利作答 解答本题的关键是它是解答此题的突破口 练3 设2a 3a 13 则二项式展开式中含x2项的系数 解析因为2a 3a 13 经验可知 a 2 则3 r 2 即r 1 所以答案480 解题探究 本小题考查了方程的概念及二项式项的系数的有关计算 在解答这类问题时 应首先求出方程的解 再根据二项式通项公式寻求相关项的计算 确定出参数 再代入求解直至结论 练4 设x y R且3x2 2y2 6x 则x2 y2的取值范围是 解析因为3x2 2y2 6x 则2y2 3x2 6x 3x x 2 0 所以x 0 2 又且x 0 2 所以x2 y2 0 4 解题探究 本小题考查了代数式的计算及转化 在解答这类问题时 应牢牢抓住题设条件 充分挖掘它的内涵 寻找出它的隐含条件 再把所求代数式适当转化使其只含一个已知参数 然后利用已掌握的知识解答问题 解答本题的关键是确定参量x的取值范围 0 4 三 分析型填空题此类填空题主要考查对知识的综合理解分析能力和分类讨论思想的应用 做好这些题目要注意结论是否惟一 分析要全面 不偏不漏 在分析的基础上进行必要的推理和计算 入手时可以从条件出发 由条件找到新的关系 直到得出结果 例3 设P为双曲线上的一点 F1 F2是该双曲线的两个焦点 若 PF1 PF2 3 2 则 PF1F2的面积为 解析因为 PF1 PF2 3 2 设 PF1 3x PF2 2x 根据双曲线定义得 PF1 PF2 3x 2x x 2a 2 所以 PF1 6 PF2 4 F1F2 52 62 42 PF1F2为直角三角形 其面积为 12 解题探究 本小题考查了双曲线的定义及三角形的有关计算 在解答这类问题时 应首先根据题意弄清楚各量之间的关系 进而判断出三角形的形状 从而确定面积 练5 数列 an 满足关系式则该数列的前n项和为 解析所以n 1 n an an 1 nan 1 n an 1 则所以数列是以2为首项 1为公差的等差数列 所以 所以Sn a1 a2 an答案 解题探究 本小题考查了数列的通项及求和 在解答这类问题时 应首先求出数列的通项公式 再根据通项确定出求和的基本方法 在求和时注意到常用的 公式法 裂项法 倒叙相加法 错位相减法等 据条件适当选取 促成问题的解决 四 推理型填空这类填空题对逻辑推理能力要求比较高 虽不要求写出推理过程 但对答案的要求必须严密 做此种类型的题目 要注意知识与知识间的联系 从此知识到彼知识的过渡要合理恰当 例4 定义在R上的函数f x 为奇函数 且函数f 2x 1 的周期为2 若f 1 2009 则f 2008 f 2009 的值应等于 解析因为函数f 2x 1 的周期为2 所以函数f x 的周期为4 又奇函数f x 的定义域为R 则f 0 0 所以f 2008 f 2009 f 0 f 1 2009 答案2009 解题探究 本小题考查了函数的周期性 奇偶性等 在解答这类问题时 首先根据函数所具有的性质 判断出其周期即原点的函数值 再利用周期性化简所求的函数关系式 进而求出函数的数值 练6 将编号为1到6的6个小球放入编号为1到4的4个盒子中 要求1号球不能放入1号盒子 并且每个盒子至少放1个球 则不同的放法共有 解析 若1号盒子放1个球 共有 若1号盒子放2个球 共有 若1号盒子放3个球 共有 所以不同的放法共有 1170 解题探究 本小题考查了排列与组合的有关概念 在解答这类问题时 应首先分清楚元素是否有序 有序是排列 无序则是组合 若遇到平均分组问题时 一定要注意每组中元素的个数是否相同 相同与不同有着质的区别 注意适当的进行排列才能解决问题 练7 如果实数x y满足条件的取值范围是 解析画出约束条件表示的可行域如图所示 而其几何意义是 可行域内任意一点Q x y 与点P 4 2 连线的斜率与1的和 由下图可知 kPA kPB 2 所以目标函数z的取值范围是 解题探究 本小题考查了线性规划的有关问题 在解答这类问题时 应首先分清楚约束条件 在约束条件下画出可行域 对目标函数进行适当转化 搞清楚目标函数所表示的几何意义 然后再根据条件进行计算 整理 直至得出结论 五 构造型填空题这是比较综合的一类填空题 在解题过程中要把某些条件或结论构造成另一种形式 找到解决问题的捷径 常见的有构造几何图形法 构造二次函数法 构造三角函数法 构造向量法 构造数列法 把现实问题构造成数学模型等 做好这类题目 对上述基础知识需要熟练掌握并灵活运用 能从题目中构造出具体的数学模型来 例5 已知实数则实数A的取值范围为 解析又A x y 所以A的几何意义是直线在x轴上的截距 其图形如图 则A 解题探究 本小题考查了数形结合的数学思想 在解答这类问题时 首先根据所给的代数式的结构和形式 构造出满足条件的数学模型 再根据所掌握的数学知识 进行合理 有效地变换 计算 可顺利得出结论 练8 已知实数a b m n满足a2 b2 4 m2 n2 9 则am bn的最大值是 解析由题意可设A a b B m n 则A B A B cos A B A B 所以当且仅当时取等号 答案6 解题探究 本小题考查了构造向量的方法解题的数学思想 在解答这类问题时 应充分观察 分析所给的条件与结论之间的内在联系 构造出方便计算的向量的坐标表示 再利用向量的有关计算方法解答该题 使问题的解决变得简捷 明快 本题也可三角换元求解 六 图形图象型填空题这类题目的解决都离不开图形图象 有的可以直接从图象中得到答案 有的还需要借助图形进行推导运算得出正确的结论 主要体现数形结合的思想 在作图象时要尽量规范 特别是与线性规划有关的题型 准确地作出图形就成功了大半 例6 集合M x y x 1 2 y2 1 y 0 集合N x y y x a 1 则由M N构成的图形的面积为时a的值为 解析如图所示 容易看出当y x a 1经过圆心C 1 0 时 即a 0或a 2时 M N构成的图形的面积均为 解题探究 本小题考查了线性规划的有关问题 在解答这类问题时 应首先根据题意画出可行域 再据条件找出最优解 代入所求关系式进行适当的计算 可顺利得到结论 0或2 练9 对a b R 记函数f x max x 1 x 2 x R 的最小值是 解析由 x 1 x 2 x 1 2 x 2 2 其图象如图 解题探究 本小题考查了绝对值的概念即有关计算 在解答这类问题时 应首先确定零点 进而写出分段函数 再画出函数的图象 利用函数的图象进行解题 可增强直观性 使解决问题的方法跃然纸上 使解法简单明了 快捷 练10 若不等式则实数b的值是 解析由题设条件可知 当且仅当时 函数f x 的图象在g x x b的图象的上方 如图所示 由图象可知 函数g x x b的图象过点答案 解题探究 本小题考查了不等式的解法及数学的转化思想 在解答这类问题时 应首先根据题意把代数式转化成几何图形 再利用几何图形表现出来的几何性质进行解题 往往起到事半功倍之功效 使问题的解决变得简单明了 快速得到结果 七 综合型填空题这类填空题知识的综合程度比较高 要求考生对知识达到灵活运用的地步 在填空题中属于难度较大的一类 得分率较低 做好此类题目要深刻地理解题意 把握命题人的考查意图 捕捉题目中的隐含信息 从复杂的条件中找到切入点 通过联想 归纳 概括 抽象等手段获得题目的结论 例7 已知函数在 0 上有最小值 5 a b为常数 则函数f x 在 0 的最大值为 解析由题意设则易知函数g x 是奇函数 因为函数f x 在 0 上有最小值 5 即存在x0 0 使f x0 5 所以g x0 2 5 则g x0 7 即g x0 7 所以 f x max f x0 g x0 2 9 答案9 解题探究 本小题考查了函数的奇偶性 在解答这类题目时 应首先观察分析所给函数的系数及结构 适当拆分成具有某特殊性的函数 再利用函数的性质进行解题 可使问题简化 从而达到求解的目的 练11 过直线y 2x 1上一点P且垂直于向量m 3 4 的直线l 与圆x2 y2 2x 0有公共点 则点P的横坐标的取值范围是 解析由题意可知 直线l的斜率为设P a 2a 1 则l 3x 4y 5a 4 0 又圆的方程为 x 1 2 y2 1 解题探究 本小题考查了向量 直线与圆的有关概念及计算 在解答这类题目时 要注意各概念间的有效衔接 其关键是各知识间的灵活转换及应用 才能使问题顺利有效解决 练12 已知函数f x a 2 x3 a 2 x2 x 3a2 1是R上的单调函数 则实数a的取值范围是 解析因为f x a 2 x2 2 a 2 x 1 所以 当a 2时 f x 1 0 x R 满足题意 当a 2时 只须 4 a 2 2 4 a 2 4 a 2 a 3 0 即2 a 3 综上 可知 2 a 3 解题探究 本小题考查了函数 导数及不等式的有关计算 在解答这类题目时 要注意在经过有效处理之后 对目标函数进行求解时 特别是涉及到含参量的系数时 要对参数进行分类讨论 否则 将导致失误 切记 2 3 1 若函数的定义域为R 则实数a的取值范围为 解析因为 1 20恒成立 x2 2ax a 0恒成立 2a 2 4a 0 a a 1 0 1 a 0 1 0 2 数列 an 满足则a2009的值为 解析所以数列 an 是以4为周期的周期数列 所以a2009 a502 4 1 a1 3 已知函数且f 2 f 0 f 3 9 则关于x的方程f x x的解的个数为 解析由f 2 f 0 得b 4 再由f 3 9得c 3 当x 0时 f x x 即2x2 5x 3 0 解得x 或x 1 当x 0时 3 x方程无解 方程解的个数为2 2 4 已知 1 x 5 a0 a1x a2x2 a3x3 a4x4 a5x5 则 a0 a2 a4 a1 a3 a5 的值等于 解析因 1 x 5 a0 a1x a2x2 a3x3 a4x4 a5x5 a0 a1 a2 a3 a4 a5 0 a0 a1 a2 a3 a4 a5 32 a0 a2 a4 a1 a3 a5 16 则 a0 a2 a4 a1 a3 a5 256 256 5 抛物线y2 4x的焦点为F 准线为l 经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A AK l 垂足为K 则 AKF的面积是 解析抛物线y2 4x的焦点F 1 0 准线为l x 1 经过F且斜率为的直线与抛物线在x轴上方的部分相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论