已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几何直观的课程背景及实践策略探究发布者:葛丽霞 发布时间:2013-04-24 13:14修改时间:2013-04-24 13:14 几何直观的课程背景及实践策略探究溯源:追溯几何直观的形成历史,探讨几何直观概念内涵,并与相关概念进行对比、辨析,有助于我们更好地了解几何直观的内涵及课程背景,把握几何直观的教育教学价值。几何直观的内涵、表现形式及教育价值东北师范大学数学与统计学院 秦德生几何直观是义务教育数学课程标准(2011年版)(以下简称2011年版课标)的十个核心概念之一,也是新增加的核心词汇。几何直观在内容、意义和方法上远远超出对几何图形本身的研究范畴。正如弗莱登塔尔所说:“几何直观能告诉我们什么是可能重要、可能有意义和可接近的,并使我们在课题、概念与方法的荒漠之中免于陷入歧途之苦。”本文基于几何课程要求试图追溯几何直观的形成历史,探讨几何直观的内涵及其与相关概念之间的联系,阐释几何直观的表现形式,挖掘培养几何直观能力的教育价值。一、几何直观形成的历史溯源1952年,我国首次制订的中小学数学教学大纲提出,小学“算术教学应该培养和发展儿童的逻辑思维能力”,中学数学应该“发展学生生动的空间想象力,发展学生逻辑的思维力和判断力”。1963年,根据华罗庚、关肇直等专家的意见,中小学数学教学的能力培养任务修改为培养“计算能力、逻辑推理能力和空间想象力”(即传统的三大能力)。1988年,九年义务教育数学教学大纲将能力培养任务改为“培养运算能力、发展逻辑思维能力和空间观念”。2001年颁布的全日制义务教育数学课程标准(实验稿)提出“丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维”。2003年颁布的普通高中数学课程标准指出:“几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辩论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学课程的基本要求。”2011年版课标把几何直观作为十个核心概念之一,并明确指出几何直观的含义,阐明其教育价值。由我国几何课程基本要求可以看出,从空间想象能力到空间观念,再到几何直观能力,几何直观的建立和发展是一个历史演变过程。二、几何直观与相关概念辨析1.直观与几何直观数学家克莱因认为,“数学不是依靠在逻辑上,而是依靠在正确的直观上,数学的直观就是对概念、证明的直接把握”;西方哲学家通常认为,“直观就是未经充分逻辑推理而对事物本质的一种直接洞察,直接把握对象的全貌和对本质的认识”;心理学家认为,“直观是从感觉到的具体对象背后,发现抽象的能力”。蒋文蔚指出,几何直观是一种思维活动,是人脑对客观事物及其关系的一种直接的识别或猜想的心理状态。徐利治先生认为,直观就是借助于经验、观察、测试或类比联想,所产生的对事物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图形的形象关系产生对数量关系的直接感知。从数学、哲学、心理学等视角可以看出,直观一般有两种:一是透过现象看本质;二是一眼能看出不同事物之间的关联。由此可见,直观是一种感知,是形象思维和抽象思维的中介,是客观世界不同事物的居间联系环节。2011年版课标指出:“几何直观主要是指利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。”换句话说,几何直观就是借助见到的(或想象出来的)几何图形的形象关系,对数学的研究对象(空间形式和数量关系)进行直接感知、整体把握的能力。2.空间观念与几何直观从研究对象来分析,空间观念不仅涉及“根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体”,而且涉及“想象出物体的方位和相互之间的位置关系,描述图形的运动和变化,依据语言的描述画出图形等”,而几何直观是凭借图形对几乎所有的数学研究对象进行思考的能力。可见,几何直观与空间观念有重叠又各有侧重。从思维角度来看,几何直观具有思维的跳跃性,而空间观念具有思维的连贯性。从能力分析角度看,空间观念倾向于即使脱离了背景也能想象出图形的形状、关系的能力,几何直观更强调借助一定的直观背景条件进行整体把握的能力。3.几何直觉与几何直观直观与直觉非常相似。所谓直觉,辞海的解释是“一般指不经过逻辑推理认识真理的能力”,而中国大百科全书的解释是“一种不经过分析、推理的认识过程而直接快速地进行判断的认识能力。直觉是不经过逻辑的、有意识的推理而识别或了解事物的能力”。从哲学认识论的视角看,直觉可以分为经验直觉、知性直觉和理性直觉。几何直觉无须推理就能直接对事物及其关系作出迅速的识别和理解,属于学习者对于数学对象的感性认识,有很大程度上的猜测成分和朦胧的整体把握,不仅有“经验直觉”的成分,而且有“知性直觉”和“理性直觉”的成分。几何直观是学习者建立在针对几何图形长期有效的观察和思考的基础之上,对于数学对象的几何属性(或与几何属性密切相关的一些属性)的整体把握和直接判断的能力,既有相对丰富的经验积累,也有经验基础之上的理性概括和升华,几何直观的“整体把握”往往带有明显的逻辑成分。4.空间想象能力与几何直观能力传统的数学教学中,空间想象力指的是人们对客观事物的空间形式进行观察、分析和抽象的能力。麦吉认为,空间想象力包括“在心理上操作、旋转、翻转或逆转形象刺激物的能力”。朱文芳认为“空间想象能力是完成空间认知任务的桥梁,空间思维能力起着决定性的核心作用”。心理学家通常认为,想象以表象为基本材料,但不是表象的简单再现,是指“在头脑中对已有表象进行加工、改造、重新组合形成新形象的心理过程”。因此,空间想象能力是指脱离背景也能想象出图形的形状、关系的能力。几何直观是在有背景的条件下进行,想象是没有背景的;几何中的推理证明始终在利用几何直观,再想象图形。三、几何直观的表现形式康德认为,直观分为经验直观和纯粹直观。孔凡哲、史宁中认为,在中小学数学中几何直观具体表现为四种形式,即实物直观、简约符号直观、图形直观和替代物直观。笔者认为,几何直观具有创造性和工具性,其目的是利用图形描述和分析数学问题。因此,从数学功能看,几何直观可以分为实物直观演示、图形直观操作和图形直观表示。实物直观演示是指借助与研究对象有一定关联的现实世界中的实际存在物,进行简捷、形象的思考和判断。实物直观演示既可以是实际存在物,如球体、柱体、锥体、长方形、平行四边形、梯形、圆、椭圆等;也可以借助计算机、七巧板、木棒等辅助的实物直观演示,引导学生通过观察、操作等活动,感受和探索图形的特征,积累图形与几何的活动经验,建立初步的空间观念。一旦借助实物直观演示用图形把一个问题描述清楚,就有可能使这个问题变得直观、简单。图形直观操作是指对实物的动手操作或图形运动操作进行几何直观探索。直观操作分为两类:一类是实物的动手操作,包括折纸、展开、折叠、切截、拼摆、密铺等操作活动,能帮学生积累丰富的几何事实,获得对简单几何体和平面图形的直观经验;另一类是图形的运动操作(如平移、旋转、反射等运动),如“点动成线”“线动成面”“面动成体”,半圆以直径为轴旋转可以形成球体,矩形以一边为轴旋转可以成为圆柱体,直角三角形以直角边为轴旋转可以成为锥体等。借助图形直观操作可以帮助学生发现、寻找解决问题的思路。因此,教师应该引导学生经历观察、操作等具体的感知过程,培养他们借助图形思考的能力。图形直观表示是指借助明确的几何图形来描述和分析数学问题。图形直观表示是一种表征方式,是一种工具符号,主要分为两类:一类是“形形表示”,如借助三视图、网格、直角坐标系等图形工具探索、描述和分析几何问题;另一类“数形表示”,利用几何图形直观探索、描述和分析几何以外的其他数学领域的问题,如利用数轴研究数系、方程的根,利用直观图分析数据,构造图形研究代数式、函数,利用单位圆研究三角函数等。借助图形直观表示图形可以帮助表述一些结果,可以帮助记忆一些结果。四、几何直观能力培养的教育价值1.几何直观能够培养学生的创造性思维几何通常被喻为“心智的磨刀石”,在数学研究中起着联络、理解,甚至提供方法的作用。从创造力来看,直观能引出数学发明,能决定理论的形式和研究方向;从数学证明上看,直观常常提供证明的思路和技巧,有时严格的逻辑证明无非是直观思考的严格化和数学加工。数学家总是力求把他们研究的问题变成几何直观问题,使他们成为数学发现的向导。在大多数情况下,数学的结果是“看”出来的,而不是“证”出来的。如,利用平面图形认识分数的乘法,借助韦恩图计算“重叠应用问题”等。所谓的“看”是一种直接判断,是建立在长期有效的观察和思考的基础之上的灵感和顿悟,是思维过程的高度简化。因此,在数学教学中保护学生先天的几何直观的潜质,培养和不断提高学生的几何直观水平,就成为数学教育的一个重要的价值追求。2.几何直观能够帮助学生理解数学几何直观在数学中无处不在。数学家依赖直观推动对数学的思考,加强对数学的理解。几何直观不仅是一切几何学的基础,而且贯穿在整个数学学习过程中。正如美国数学家阿蒂亚所言:“在几何中,视觉思维占主导地位,而代数中有序思维占主导地位。所以,几何首先用到的是最直接的形象思维,用形象思维洞察。”几何直观能利用图形生动形象地描述数学问题,直观地反映分析问题的思路,是理解数学的有效渠道。例如,借助地图理解比例,利用直观图理解正方形边长和面积的关系,借助数轴认识小数的意义,借助“线路图”理解行程问题,借助网络图理解单元知识等。著名数学家拉格朗日曾经说过:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄,但当这两门学科结合成伴侣时,它们就相互吸收新鲜的活力,从而以快速的步伐走向完美。”因此,教师在数学教学中要挖掘教材资源,利用信息技术工具,展现丰富多彩的图形世界,设计“借助几何直观进行思考”的典型案例;要注意让学生经历动手操作、图形制作的过程,培养学生用几何直观描述、分析问题的意识,培养学生的画图能力,文字语言、符号语言和图形语言相互转化的能力,为学生使用几何直观理解数学提供保障。3.几何直观能够培养学生科学的思维方式数学抽象概念发展的“直观形式直观”模式,是一般科学概念发展的“具体抽象具体”模式的特殊表现形式。几何直观具有原始的创造性。数学经过形式化而趋于完美,又通过直观化而返璞归真,这正是数学发展的辩证过程。正是形式化与直观化之间的矛盾运动推动了数学的发展以及科学的发展。数学教学应该借助几何直观、几何解释启迪学生思路,利用直观背景或者几何直观帮助学生理解和接受抽象的内容和方法,为学生创造主动思考的机会。例如,借助数轴认识小数的意义,利用直观图理解异分母分数加减法先通分的必要性,能使学生借助直观图,从洞察和想象的内部源泉入手,通过自主探索、发现和再创造,经历反思性循环,体验和感受数学发现的过程,使学生从非形式化的、算法的直觉相互作用与矛盾中形成数学观。可见,直观本身不是目的,而是手段。对于学生的数学学习而言,用图形说话、用图形描述问题、用图形讨论问题等,就是为了形成生动表象并借以形成概念、发展规律,促进抽象思维的发展。4.几何直观能够帮助学生感悟
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 便利舒适的学生宿舍三篇
- 和孩子一同创造美好的未来计划
- 劳动外派人员劳动合同三篇
- 2024年碱金属及碱土金属项目申请报告模板
- 工作压力管理的有效方法计划
- 江西省鹰潭市(2024年-2025年小学五年级语文)人教版阶段练习(上学期)试卷及答案
- 辽宁省沈阳市(2024年-2025年小学五年级语文)人教版小升初真题(下学期)试卷及答案
- 河北省唐山市(2024年-2025年小学五年级语文)人教版质量测试(下学期)试卷及答案
- 河南省南阳市(2024年-2025年小学五年级语文)统编版小升初模拟(下学期)试卷及答案
- 代理赠与合同范本
- 软件平台安全体系建设方案
- MBR污水处理设备说明书
- 星星之火可以燎原(1)
- 精益道场建设方案与步骤课件
- 廉洁文化进校园班级主题班会
- 中国戏剧概述.(课堂PPT)
- 盘扣式外脚手架施工方案
- 古诗句接龙100首
- 注塑车间生产作业流程图
- 10KV台箱变试验方案
- 司机控制器的发展历史
评论
0/150
提交评论