高中数学 3.2《立体几何中的向量》课件一 新人教A版选修21.ppt_第1页
高中数学 3.2《立体几何中的向量》课件一 新人教A版选修21.ppt_第2页
高中数学 3.2《立体几何中的向量》课件一 新人教A版选修21.ppt_第3页
高中数学 3.2《立体几何中的向量》课件一 新人教A版选修21.ppt_第4页
高中数学 3.2《立体几何中的向量》课件一 新人教A版选修21.ppt_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 2 3空间的角的计算 空间向量的引入为代数方法处理立体几何问题提供了一种重要的工具和方法 解题时 可用定量的计算代替定性的分析 从而避免了一些繁琐的推理论证 求空间角与距离是立体几何的一类重要的问题 也是高考的热点之一 我们主要研究怎么样用向量的办法解决空间角的问题 空间的角 空间的角常见的有 线线角 线面角 面面角 空间两条异面直线所成的角可转化为两条相交直线所成的锐角或直角 故我们研究线线角时 就主要求范围内的角 斜线与平面所成的角是指斜线与它在面内的射影所成锐角 再结合与面垂直 平行或在面内这些特殊情况 线面角的范围也是 两个平面所成的角是用二面角的平面角来度量 它的范围是 总之 空间的角最终都可以转化为两相交直线所成的角 因此我们可以考虑通过两个向量的夹角去求这些空间角 异面直线所成角的范围 思考 结论 一 线线角 所以与所成角的余弦值为 解 以点c为坐标原点建立空间直角坐标系 如图所示 设则 所以 例一 练习 在长方体中 简解 直线与平面所成角的范围 思考 结论 二 线面角 简解 所以 练习 x y z 设正方体棱长为1 将二面角转化为二面角的两个面的方向向量 在二面角的面内且垂直于二面角的棱 的夹角 如图 设二面角的大小为 其中 d c b a 三 面面角 方向向量法 二面角的范围 例三 如图3 甲站在水库底面上的点a处 乙站在水坝斜面上的点b处 从a b到直线 库底与水坝的交线 的距离ac和bd分别为和 cd的长为 ab的长为 求库底与水坝所成二面角的余弦值 解 如图 化为向量问题 根据向量的加法法则有 于是 得 设向量与的夹角为 就是库底与水坝所成的二面角 因此 所以 所以库底与水坝所成二面角的余弦值为 三 面面角 二面角的范围 法向量法 注意法向量的方向 一进一出 二面角等于法向量夹角 同进同出 二面角等于法向量夹角的补角 设平面 方向朝面外 方向朝面内 属于 一进一出 的情况 二面角等于法向量夹角 小结 1 异面直线所成角 2 直线与平面所成角 d c b a 3 二面角 一进一出 二面角等于法向量的夹角 同进同出 二面角等于法向量夹角的补角 2 如果平面的一条斜线与它在这个平面上的射影的方向向量分别是 1 0 1 0 1 1 那么这条斜线与平面所成的角是 3 已知两平面的法向量分别m 0 1 0 n 0 1 1 则两平面所成的钝二面角为 练习 1 已知 2 2 1 4 5 3 则平面abc的一个法向量是 600 1350 4 三棱锥p abcpa abc pa ab ac e为pc中点 则pa与be所成角的余弦值为 5 直三棱柱abc a1b1c1中 a1a 2 ab ac 1 则ac1与截面bb1cc1所成角的余弦值为 6 正方体中abcd a1b1c1d1中e为a1d1的中点 则二面角e bc a的大小是 7 正三棱柱中 d是ac的中点 当时 求二面角的余弦值 8 已知正方体的边长为2 o为ac和bd的交点 m为的中点 1 求证 直线面mac 2 求二面角的余弦值 故 则可设 1 则b 0 1 0 作于e 于f 则 即为二面角的大小 在中 即e分有向线段的比为 由于且 所以 在中 同理可求 即二面角的余弦值为 解法二 同法一 以c为原点建立空间直角坐标系c xyz 在坐标平面yoz中 设面的一个法向量为 同法一 可求b 0 1 0 由得 解得 所以 可取 二面角的大小等于 即二面角的余弦值为 方向朝面外 方向朝面内 属于 一进一出 的情况 二面角等于法向量夹角 8 证明 以为正交基底 建立空间直角坐标系如图 则可得 8 已知正方体的边长为2 o为ac和bd的交点 m为的中点 1 求证 直线面mac 2 求二面角的余弦值 习题课 例1如图 在四棱锥p abcd中 底面abcd是正方形 侧棱pd 底面abcd pd dc e是pc的中点 作ef pb交pb于点f 1 求证 pa 平面edb 2 求证 pb 平面efd 3 求二面角c pb d的大小 a b c d p e f a b c d p e f 解 如图所示建立空间直角坐标系 点d为坐标原点 设dc 1 1 证明 连结ac ac交bd于点g 连结eg a b c d p e f g 2 求证 pb 平面efd a b c d p e f 3 求二面角c pb d的大小 a b c d p e f 例2 如图 在四棱锥s abcd中 底面abcd为平行四边形 侧面sbc底面abcd 已知ab 2 bc sa sb 1 求证 2 求直线sd与平面sab所成角的正弦值 s a b c d c 证明 1 取bc中点o 连接oa os 2 求直线sd与平面sab所成角的正弦值 所以直线sd与平面sab所成角的正弦值为 例3如图 在四棱锥p abcd中 底面abcd为矩形 侧棱pa 底面abcd pa ab 1 ad 在线段bc上是否存在一点e 使pa与平面pde所成角的大小为450 若存在 确定点e的位置 若不存在说明理由 d b a c e p 解 以a为原点 ad ab ap所在的直线分别为x轴 y轴 z轴 建立空间直角坐标系 设be m 则 例4 2004 天津 如图所示 在四棱锥p abcd中 底面abcd是正方形 侧棱pd底面abcd pd dc e是pc的中点 1 证明 pa 平面edb 2 求eb与底面abcd所成的角的正切值 a b c d p e 1 证明 设正方形边长为1 则pd dc da 1 连ac bd交于g点 2 求eb与底面abcd所成的角的正切值 所以eb与底面abcd所成的角的正弦值为 所以eb与底面abcd所成的角的正切值为 方向朝面内 方向朝面外 属于 一进一出 的情况 二面角等于法向量夹角 1 如图 已知 直角梯形oabc中 oa bc aoc 90 so 面oabc 且os oc bc 1 oa 2 求 1 异面直线sa和ob所成的角的余弦值 2 os与面sab所成角的余弦值 3 二面角b as o的余弦值 练习 1 如图 已知 直角梯形oabc中 oa bc aoc 90 so 面oabc 且os oc bc 1 oa 2 求 1 异面直线sa和ob所成的角的余弦值 1 如图 已知 直角梯形oabc中 oa bc aoc 90 so 面oabc 且os oc bc 1 oa 2 求 2 os与面sab所成角的余弦值 所以os与面sab所成角的余弦值为 所以二面角b as o的余弦值为 1 如图 已知 直角梯形oabc中 oa bc aoc 90 so 面oabc 且os oc bc 1 oa 2 求 3 二面角b as o的余弦值 2 在如图的实验装置中 正方形框架的边长都是1 且平面abcd与平面abef互相垂直 活动弹子m n分别在正方形对角线ac和bf上移动 且cm和bn的长度保持相等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论