外文翻译=冲压变形=中英文翻译_第1页
外文翻译=冲压变形=中英文翻译_第2页
外文翻译=冲压变形=中英文翻译_第3页
外文翻译=冲压变形=中英文翻译_第4页
外文翻译=冲压变形=中英文翻译_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁科技学院本科生毕业设计(论文) 第 1 页 附录 1 Categories of stamping forming Many deformation processes can be done by stamping, the basic processes of the stamping can be divided into two kinds: cutting and forming. Cutting is a shearing process that one part of the blank is cut form the other .It mainly includes blanking, punching, trimming, parting and shaving, where punching and blanking are the most widely used. Forming is a process that one part of the blank has some displacement form the other. It mainly includes deep drawing, bending, local forming, bulging, flanging, necking, sizing and spinning. In substance, stamping forming is such that the plastic deformation occurs in the deformation zone of the stamping blank caused by the external force. The stress state and deformation characteristic of the deformation zone are the basic factors to decide the properties of the stamping forming. Based on the stress state and deformation characteristics of the deformation zone, the forming methods can be divided into several categories with the same forming properties and to be studied systematically. The deformation zone in almost all types of stamping forming is in the plane stress state. Usually there is no force or only small force applied on the blank surface. When it is assumed that the stress perpendicular to the blank surface equal to zero, two principal stresses perpendicular to each other and act on the blank surface produce the plastic deformation of the material. Due to the small thickness of the blank, it is assumed approximately that the two principal stresses distribute uniformly along the thickness direction. Based on this analysis, the stress state and the deformation characteristics of the deformation zone in all kind of stamping forming can be denoted by the point in the coordinates of the plane principal stress(diagram of the stamping stress) and the coordinates of the corresponding plane principal stains (diagram of the stamping strain). The different points in the figures of the stamping stress and strain possess different stress state and deformation characteristics. When the deformation zone of the stamping blank is subjected toplanetensile stresses, it can be divided into two cases, that is 0,t=0and 0,t=0.In 辽宁科技学院本科生毕业设计(论文) 第 2 页 both cases, the stress with the maximum absolute value is always a tensile stress. These two cases are analyzed respectively as follows. 2)In the case that 0andt=0, according to the integral theory, the relationships between stresses and strains are: /( -m) =/( -m) =t/( t -m) =k ( 1.1) where, , , t are the principal strains of the radial, tangential and thickness directions of the axial symmetrical stamping forming; , and tare the principal stresses of the radial, tangential and thickness directions of the axial symmetrical stamping forming;m is the average stress,m=( +t) /3; k is a constant. In plane stress state, Equation 1.1 3/( 2-) =3/( 2-t) =3t/-( t+) =k ( 1.2) Since 0,so 2-0 and 0.It indicates that in plane stress state with two axial tensile stresses, if the tensile stress with the maximum absolute value is , the principal strain in this direction must be positive, that is, the deformation belongs to tensile forming. In addition, because 0, therefore -( t+) 2,0. The range of is =0 . In the equibiaxial tensile stress state = ,according to Equation 1.2,=0 and t 0 and t=0, according to Equation 1.2 , 2 0 and 0,This result shows that for the plane stress state with two tensile stresses, when the 辽宁科技学院本科生毕业设计(论文) 第 3 页 absoluste value of is the strain in this direction must be positive, that is, it must be in the state of tensile forming. Also because0, therefore -( t+) ,0. The range of is = =0 .When =,=0, that is, in equibiaxial tensile stress state, the tensile deformation with the same values occurs in the two tensile stress directions; when =0, =- /2, that is, in uniaxial tensile stress state, the deformation characteristic in this case is the same as that of the ordinary uniaxial tensile. This kind of deformation is in the region AON of the diagram of the stamping strain (see Fig.1.1), and in the region GOH of the diagram of the stamping stress (see Fig.1.2). Between above two cases of stamping deformation, the properties ofand, and the deformation caused by them are the same, only the direction of the maximum stress is different. These two deformations are same for isotropic homogeneous material. (1)When the deformation zone of stamping blank is subjected to two compressive stressesand(t=0), it can also be divided into two cases, which are 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the tangential direction depends on the values of and .When =2,=0;when 2,0. 辽宁科技学院本科生毕业设计(论文) 第 4 页 The range of is 0 and t0.The strain in the thickness direction of the blankt is positive, and the thickness increases. The deformation condition in the radial direction depends on the values of and . When =2, =0; when 2,0. The range of is 0.This kind of deformation is in the region GOL of the diagram of the stamping strain (see Fig.1.1), and in the region DOE of the diagram of the stamping stress (see Fig.1.2). The deformation zone of the stamping blank is subjected to two stresses with opposite signs, and the absolute value of the tensile stress is larger than that of the compressive stress. There exist two cases to be analyzed as follow: 1)When 0, |, according to Equation 1.2, 2-0 and 0.This result shows that in the plane stress state with opposite signs, if the stress with the maximum absolute value is tensile, the strain in the maximum stress direction is positive, that is, in the state of tensile forming. Also because 0, |, therefore =-. When =-, then 0,0,0, |, according to Equation 1.2, by means of the same analysis mentioned above, 0, that is, the deformation zone is in the plane stress state with opposite signs. If the stress with the maximum absolute value is tensile stress , the strain in this direction is positive, that is, in the state of tensile forming. The strain in the radial direction is negative ( =-. When =-, then 0, 0, 0,|, according to Equation 1.2, 2- 0 and 0. The strain in the tensile stress direction is positive, or in the state of tensile forming. The range of is 0=-.When =-, then 0,0,0, |, according to Equation 1.2 and by means of the same analysis mentioned above,=-.When =-, then 0, 0, =-.When =-, then 0, 0, 0 t=0和 0, t=0。再这两种情况下,绝对值最大的应力都是拉应力。以下对这两种情况进行分析。 1)当 0 且 t=0 时,安全量理论可以写出如下应力与应变的关系式: 辽宁科技学院本科生毕业设计(论文) 第 10页 (1-1) /( - m) = /( - m) = t/( t - m) =k 式中 , , t 分 别 是 轴对称冲压 成 形时 的 径向 主 应变 、切向主 应 变和厚度方向上的主 应变 ; , , t 分 别 是 轴对称冲压 成 形时 的 径向 主 应 力、切向主 应 力和厚度方向上的主 应 力; m 平均 应 力, m=( + + t) /3; k 常数 。在平面 应 力 状态 ,式( 1 1)具有如下形式: 3 /( 2 - ) =3 /( 2 - t) =3 t/-( t+ ) =k ( 1 2) 因为 0,所以必定有 2 - 0 与 0。 这个结 果表明:在 两向拉应 力的平面 应 力 状态时 ,如果 绝对 值最大 拉应 力是 ,则在这个方向上的主应变一定是正应变,即是伸长变形。 又因为 0,所以必定有 -( t+ ) 2 时, 0。 的变化范围是 = =0 。在双向等拉力状态时, = ,有式( 1 2)得 = 0 及 t 0 且 t=0 时,有式( 1 2)可知:因为 0,所以 1) 定有 2 0 与 0。这个结果表明:对于两向拉应力的平面应力状态,当 的绝对值最大时,则在这个方向上的应变一定时正的,即一定是伸长变形。 又因为 0,所以必定有 -( t+ ) , 0。 辽宁科技学院本科生毕业设计(论文) 第 11页 的变化范围是 = =0 。当 = 时, = 0, 也就是在 双向等拉 力 状态下 ,在 两个拉应 力方向 上产 生 数 值相同的伸 长 变形 ;在受 单向拉应 力 状态时 , 当 =0 时, =- /2,也就是说, 在受 单向拉应 力 状态下 其 变形 性 质 与一般的 简单 拉伸是完全一 样 的 。 这种变形与受力情况,处于冲压应变图中的 AOC 范围内(见图 1 1);而在冲压应力图中则处于 AOH 范围内(见图 1 2)。 上述两种冲压情况,仅在最大应力的方向上不同,而两个应力的性质以及它们引起的变形都是一样的。因此,对于各向同性的均质材料,这两种变形是完全相同的。 冲压毛坯变形区受两向压应力的作用,这种变形也分两种情况分析,即 0 与 t0,即在板料厚度方向上的 应变 是正的,板料增厚。 在 方向上的变形取决于 与 的数值:当 =2 时, =0;当 2 时, 0。 这时 的变化范围是 与 0 之间 。当 = 时,是双向等 压 力状态时,故有 = 0 与 t0,即在板料厚度方向上的 应变 是正的,即 为压缩变形 ,板厚增大。 在 方向上的变形取决于 与 的数值:当 =2 时, =0;当 2 , 0。 这时, 的数值只能在 0。这种变形与受力情况,处于冲压应变图中的 GOL 范围内(见图 1 1);而在冲压应力图中则处于 DOE 范围内(见图 1 2)。 冲压 毛坯变形区受两个异号应力的作用,而且拉应力的绝对值大于压应力的绝对 值。这种变形共有两种情况,分别作如下分析。 1)当 0, | |时,由式( 1 2)可知:因 为 0, | |,所以一定有 2 - 0 及 0。 这个结 果表明:在异 号 的平面 应 力 状态时 ,如果 绝对 值最大 应 力是 拉应 力 ,则在这个绝对值最大的拉应力方向上应变一定是正应变,即是伸长变形。 又因为 0, | |,所以必定有 0 0, 0, | |时,由式( 1 2)可知: 用与前项相同的方法分析可得 0。 即在异 号应 力作用的平面 应 力 状态下 ,如果 绝对值最大 应 力是 拉应 力 ,则在这个方向上的应变是 正的,是伸长变形;而在压应力 方向上的应变是负的( 0, 0, 0, | |时,由式( 1 2)可知:因 为 0, | |,所以一定有 2 - 0, 0, 即在 拉应 力方向上的应变 是正的, 是伸长变形。 这时 的变化范围只能在 =- 与 =0 的范围内 。当 =- 时, 0 0, 0, | |时,由式( 1 2)可知: 用与前项相同的方法分析可得 0, 0, 0,而且 =- /2。这种变形情况处于冲压应变图中的 DOE 范围内(见图 1 1);而在冲压应力图中则处于 BOC 范围内(见图 1 2)。 这四种变形与相应的冲压成形方法之间是相对的,它们之间的对应关系,用文字标注在图 1 1 与图 1 2 上。 上述分析的四种变形情况,相当于所有的平面应力状态,也就是说这四种变形情况可以把全部的冲压变形毫无遗漏地概括为两大类别,即伸长类与压缩类。 当作用于冲压毛坯变形区内的拉应力的绝对值最大时,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论