y《数学建模》练习题.doc_第1页
y《数学建模》练习题.doc_第2页
y《数学建模》练习题.doc_第3页
y《数学建模》练习题.doc_第4页
y《数学建模》练习题.doc_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆蒇袅肃蒈蚂螁肂膈蒅蚇肁莀蚁蚃肀蒂薃羂肀膂蝿袈聿芄薂螄肈莇螇蚀肇葿薀罿膆腿莃袅膅芁薈螁膄蒃莁螇膄膃蚇蚃膃芅葿羁膂莈蚅袇膁蒀蒈螃膀膀蚃虿艿节蒆羈芈莄蚁袄芈薇蒄袀芇芆螀螆袃莈薃蚂袂蒁螈羀袂膀薁袆袁芃螆螂羀莅蕿蚈罿蒇莂羇羈膇薇羃羇荿蒀衿羆蒂蚆螅羆膁葿蚁羅芄蚄羀羄莆 数学建模练习题一、 填空题:1、设年利率为0.05,则10年后20万元的现值按照复利计算应为 19.44 .2、设年利率为0.05,则20万元10年后的终值按照复利计算应为 20.578 .3、若银行的年利率是%,则需要时间 2/(1+x) ,存入的钱才可翻番.4、一家服装店经营的某种服装平均每天卖出110件,进货一次的批发手续费为200元,存储费用为每件0.01元/天,店主不希望出现缺货现象,则最优进货周期与最优进货量分别为 19 天,2090件 .5、设某种商品的需求量函数是而供给量函数是,其中为该商品的价格函数,那麽该商品的均衡价格是 80 .6、一次晚会花掉100元用于食品和饮料,其中食品至少要花掉40%,饮料起码要花30元,用和列出花在食品和饮料上的费用的数学模型是 。7、有人观察到鱼尾每摆动一次,鱼所移动的距离几乎与鱼身的长度相等,则鱼尾摆动的次数(次/秒)、鱼身的长度和它的速度的关系式为 V=TL 。8、已知行星的质量与它的密度和它的半径的立方成正比.若某行星的直径是地球直径的倍,且它的平均密度是地球的倍,则此行星质量是地球的 ddds 倍.9、在超级市场的收银台有两条队伍可选择,队1有个顾客,每人都买了件商品,队2有个顾客,每人都买了件商品,假设每个人付款需秒,而扫描每件商品需秒秒,则加入较快队1的条件是 .10、在夏季博览会上,商人预测每天冰淇淋销量将和下列因素有关: (1) 参加展览会的人数;(2)气温超过;(3)冰淇淋的售价.由此建立的冰淇淋销量的比例模型应为. 11、若则与的函数关系是 y=kx . 12、设表示挣的钱数,表示花的钱数,则“钱越多花的也就越多”的数学模型可以简单表示为 .二、分析判断题:1、考虑在一片面积为定数的草地上进行牛的养殖问题.为了获得最大经济效益,指出建立该问题数学模型应该考虑的相关因素至少5个。2、有一大堆油腻的盘子和一盆热的洗涤剂水。为尽量多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。解:1)水的温度足够洗掉油腻,2)水的温度适合手的进入其中,3)洗涤过程中水的温度在逐渐变凉,4)多长时间凉得不能洗干净。3、要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种。 解:1)全校选修该课程的具体人数,2)这些人分布在那些班级,3)上选修课与正常教学是否有冲突,4)上选修课的老师能不能到位,5)每周多少节选修课合适。4、假设某个数学模型建成为如下形式: 试在适当的假设下将这个模型进行简化.5、某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现甚麽结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性。解:由题意可知,下一年病人数=当年患者数的一半+新患者令Xn为从2004年起计的n年后患者的人数,则Xn+1=0.5Xn+1000 且Xo=1200由此可以算出从2005年起计的n年后患者的人数,则 X5=1975人显然,这也是一阶线性常系数差方程,且Xn的值会趋向某一定值L,可求出L=2000。说明无论多少年过去,患者人数只能趋向2000,但不会达到2000人。三、 计算题:某铝合金加工单位要加工一批成套窗料,每套窗料含有和长度的料各两根,总计要加工套,所用原料的长度均为试建立整数规划模型以给出一个截料方案,使得所用原料最少?解:模型问题分析要求材料最省是指每根成料被裁后余料最短,为此不妨给出各种方案,再进行混合,从中选取最佳组合,方案如下表 方案长度方案1方案2方案32.2m长0121.5m长310料头长0.10.90.2模型假设1、套裁时为考虑裁剪损失等其它因素2、假定如下变量。按方案1需原料X1根。方案2需原料X2根。方案3需原料X3根。模型建立由假设2。总料头长 y=0.1x1+0.9x2+0.2x3目标是求其最小值。又由配套要求应有0x1+x2+2x3=40 3x1+x2+0x3=40于是得到套裁裁问题的数学模型 min y=0.1x1+0.9x2+0.2x3 X2+2x3=40 3x1+x2=40 x1,x2,x3 e N模型求解:x1=40/3,x3=20。因为x1 e N 。便有最佳方案。按方案1截14根,按方案3截20根。方案2不予考虑。总计需34根原料,料头总长为5.4m四、综合应用题:1、试建立方桌问题在四条腿脚呈长方形情形时的数学模型,以说明方桌能否在地面上放稳的问题。解:依假设条件,四个桌脚连线呈正方形,因而以其中心为对称点,令正方形绕中心旋转便表示了方桌位置改变,于是可以用旋转角度的变化表达桌子的不同位置。为了确定起见,我们以这个正方形中心为原点建立平面直角坐标系,并假设旋转开始时(角度,四个桌脚点 、 、C 、 中 、C 位于X轴上,则 、D 位于 Y轴上。旋转角度 后,点、 、C 、变到点、 、 、 (图 1-5),显然,随着的改变,方桌的位置也跟着改变,从而桌脚与地面距离也随之改变。注意到试验结果,尽管方桌有四只脚,因而有四个距离,但对于每个角度,总有点、C同时着地而、D点不同时着地或、D点同时着地,而 、C 点不同时着地,故只要设两个距离函数即可。、C 两脚与地面距离之和为,、D两脚与地面距离之和为 ,且作为距离函数的 , 均为非负函数。由假设 4, 与 均为连续函数。而由假设 3,对任一角度 ,恒有 =0而 0 或 =0而 0,即对 =0 成立。又为证明存在角度,使 =0, 0同时成立,还需要条件支持。注意到在初始位置 (=0),或,=0,0 或 0,=0 ,而旋转 90 度后,两组条件恰好交换。如此,方桌通过旋转改变位置能放稳的证明,便归结为证明如下的数学命题:已知 ,是 的连续函数,对任意 ,=0 且=0 时时0,0时=0。 求证:存在,使 =0。这就是方桌问题的数学模型。易见只需引进一个变量 及其一元函数,便把模型条件和结论用简单又精确的数学语言表述出来。从而形成所需要的数学模型。2、试建立确定情形下允许缺货的存储问题的数学模型。提示: 所谓的确定情形下的存储模型是指课程的第一章提到过的不允许缺货的存储模型;所谓允许缺货是在不允许缺货模型假设条件下,再考虑因缺货造成的损失建立相应的模型。解:确定型且不允许缺货的存储模型公式:,其中是平均每天的销售量,为一次进货手续费,为单位商品存储费(元/天);而分别为一次进货量和相邻两次进货的时间间隔.3、某水库建有10个泄洪闸,现在水库的水位已经超过安全线,上游河水还在不断地流入水库.为了防洪,须调节泄洪速度.经测算,若打开一个泄洪闸,30个小时水位降至安全线,若打开两个泄洪闸,10个小时水位降落至安全线.现在,抗洪指挥部要求在3个小时内将水位降至安全线以下,问至少要同时打开几个闸门?试组建数学模型给予解决. 问题分析:安全线以下并不意味着水位高度不存在模型假设:根据问题分析假设1、设安全线以下水位高度为0。2、在泄洪前水位高度为h3、每个泄洪闸泄洪量均为a4、水流进的速度为常数v模型建立。设需x个泄洪闸才能在30个小时水位降至安全线,则ax10=10(h。+10v)又a1010=30(h+2v)a24=2(h。+4v)即得问题的数学模型为 ax10=10(h。+10v) a1010=30(h+2v) a24=2(h。+4v)模型求解得 a=2v h。=4v从而得到 x=5即5小时水位才能降至安全线以下。4、在比较寒冷的北方城镇,双层玻璃密封窗使用的十分普遍.这种窗户上的玻璃是双层的,两层玻璃中间有一定空隙,利用橡胶制品将中间的空气与外界隔离开制成.我们已经通过建立热传导模型证明了:这种窗户保暖效果比过去沿用多年的单层玻璃窗要好,试建立数学模型以描述双层玻璃密封窗对于高热的南方的防热功能。(注:以上题目均要求使用五步建模法作出)假设单层窗厚度为2d,双层窗厚度也为2 d,但分为两个厚度为d的部分如图,两层窗中有宽度为l的不流动空气如图。设双层玻璃的外侧温度为Ta。外层玻璃内侧温度为Tb。常数T1、T2。如假设2,并设玻璃的热传导系数k1(0),空气的热传导系数k(0),则有公式得双层玻璃与一层空气的热传导值为Q=k1(T1-Ta)/d=k1(Tb- T2)/d=k2(Ta-Tb)/l为与单层玻璃做比较,消去Ta、Tb得k1(T1-T)/d(A+2) 而A=lk1/dk2 又单层窗的热传导值为Q。=k1(T1-T2)/2d 故、即为用于比较分析所需的数学模型。二一、 填空题:1、一个连通图能够一笔画出的充分必要条件是(该图为连通图且奇点个数为0或2 ). 2、如图是一个邮路,邮递员从邮局A出发走遍所有 长方形街路后再返回邮局.若每个小长方形街路的边长横向 A 均为1km,纵向均为2km,则他至少要走( 22 )km.3、设某种物资有两个产地,其产量分别为10、20,两个销地的销量相等均为15。如果从任意产地到任意销地的单位运价都相等为则最优运输方案与运价具有优运输方案不惟一;总运费均相等 两个特点。4、设开始时的人口数为,时刻的人口数为,若人口增长率是常数,那麽人口增长问题的马尔萨斯模型应为 .5、设开始时的人口数为,时刻的人口数为,若允许的最大人口数为,人口增长率由表示,则人口增长问题的逻辑斯蒂克模型为二、分析判断题:1、从下面不太明确的叙述中确定要研究的问题,需要哪些数据资料(至少列举3个),要做些甚麽建模的具体的前期工作(至少列举3个) ,建立何种数学模型:一座高层办公楼有四部电梯,早晨上班时间非常拥挤,该如何解决。答:1)要研究的问题:如何设置四部电梯的停靠方式,使之发挥最大效益 2)所需资料为:每天早晨乘电梯的总人数、各层上、下电梯的人数、电梯的速度、楼层的高度、层数等 3)要做的具体建模前期工作:观察和统计所需资料,一般讲,需要统计一周内每天的相关资料 4)可以建立概率统计模型,亦可在适当的假设下建立确定性模型 2、一条公路交通不太拥挤,以至人们养成“冲过”马路的习惯,不愿意走临近的“斑马线”。交管部门不允许任意横穿马路,为方便行人,准备在一些特殊地点增设“斑马线”,以便让行人可以穿越马路。那末“选择设置斑马线的地点”这一问题应该考虑哪些因素?试至少列出3种。以下几种因素都在考虑范围之内:(1)车流密度;(2)穿越速度;(3)两车道间是否有安全隔离带;(4)公路两侧的视野;(5)司机的反映时间长短;(6)单行还是双行道;(7)车间是否等距;(8)车流是否均匀;(9)穿越等待时间等等。3、地方公安部门想知道,当紧急事故发生时,人群从一个建筑物中撤离所需要的时间,假设有足够的安全通道.若指挥者想尽可能多且快地将人群撤离,应制定甚麽样的疏散计划.请就这个计划指出至少三个相关因素,并使用数学符号表示。解:撤离时人员的分布状态、人员总数、撤离速度、人们之间相对拥紧程度、人员所在地与安全地点的距离、人员撤离完毕所需要的总时间等。4、作为经济模型的一部分,若产量的变化率与生产量和需求量之差成正比,且需求量中一部分是常数,另一部分与产量成正比,那麽相应的微分方程模型是甚麽?解微分方程模型是:,5、某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现甚麽结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性。解: 根据题意可知:下一年病人数=当年患者数的一半+新患者.于是令为从2000年起计算的年后患者的人数,可得到递推关系模型:得递推公式由可以算出2005年时的患者数人. 显然这也是一阶线性常系数差分方程,且的值会趋向某 一限定值L,可求出L=2000,说明无论多少年过去,患者人数只是趋向2000,但不会达到2000人。6、某营养配餐问题的数学模型为minZ=4x1+3x2s.t. 其中表示参与配餐的两种原料食品的采购量,约束条件(1)、(2)、(3)依次表示铁、蛋白质和钙的最低摄入量。并用图解法给出了其最优解,试分析解决下述问题:(1) 假如本题的目标函数不是求最小而是求最大值类型且约束条件不变,会出现什么结果?(2) 本题最后定解时,只用了直线(1)与直线(3),而直线(2)未用上,这件事说明了什么?试从实际问题背景给以解释。 解:(1)假如本题的目标函数不是求最小而是求最大值类型且约束条件不变,则可行域不存在,故无解。(2),若用直线(2), ,50/1110/11,则z不可能取到最小,同理直线(2)与直线(3)也不可能取到最小。7、一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是又过两个小时,含量降为试判断,当事故发生时,司机是否违反了酒精含量的规定(不超过80/100.解:设为时刻血液中酒精的浓度,则浓度递减率的模型应为其通解是而就是所求量. 由题设可知故有 和 由此解得 可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 8、某公司经营的一种产品拥有四个客户,由公司所辖三个工厂生产,每月产量分别为3000,5000和4000件.公司已承诺下月出售4000件给客户1,出售3000件给客户2以及至少1000件给客户3,另外客户3和4都想尽可能多购剩下的件数.已知各厂运销一件产品给客户可得到的净利润如表1所示,问该公司应如何拟订运销方案,才能在履行诺言的前提下获利最多?表1 单位:元/件 客户利润工厂1 2 3 412365 63 62 6468 67 65 6263 60 59 60 上述问题可否转化为运输模型?若可以则转化之(只需写出其产销平衡运价表即可),否则说明理由。答:可以转化为运输模型,具体做法如下:首先确定总的产销量. 总产量显然为12000件;总需求量中,客户3的需求量在保证已承诺给客户1和2的供给量7000件条件下,最多是5000件,而客户4则最多可得4000件。因此,总需求量按最高需求应为16000件,因而可视问题为供小于求的运输问题 其次,为产销平衡,虚设一个工厂4,其产量为4000件 再次,为确定需求量,将有最低需求与额外需求量的客户分别视为两个客户,并确定各自需求量,注意最低需求量不能由虚设工厂供给,从而可设其利润值是-M(M是一个充分大的正数). 综合上述讨论得产销平衡运价表如下:表1 单位:元/件 客户利润工厂1 2 3 3 4供给量123 465 63 62 62 6468 67 65 65 6263 60 59 59 60 -M -M -M 0 03000500040004000 需 求 量 4000 3000 1000 4000 4000 三、计算题:1、有一批货物要从厂家A运往三个销售地B、C、D,中间可经过9个转运站从A到的运价依次为3、8、7;从到的运价为4、3;从到的运价为2、8、4;从到的运价为7、6;从到的运价为10、12;从到的运价为13、5、7;从到的运价为6、8;从到的运价为9、10;从到的运价为5、10、15;从到的运价为8、7。试利用图模型协助厂家制定一个总运费最少的运输路线。AE2E3E1G2G3G1F2F3F1CDB738342847610121357689105101587建立图模型如图1-1.图1-1利用双标号法计算结果如图1-2.AE2E3E1G2G3G1F2F3F1CDB738342847610121357689105101587202116131112176773801913图1-2再利用逆向搜索法便可得到运输路线有: , ; 或 . 2、试求如表2所示运输问题的最优运输方案和最小运输费用: 表2单位:百元/吨 销地产地 运价 B1 B2 B3 B4产量 A1A2A3 3 5 2 9 4 7 5 12 6 9 10 11 20 15 25销量 10 20 15 15 答:易见,这是一个产销平衡且为最小值类型的运输问题。我们有 (1) 利用最小元素法可得初始方案如表1,表1 销地 运价产地 B1 B2 B3 B4产量1515A1A2A3 3 5 2 9 4 7 5 12 6 9 10 11 20 15 25销量 10 20 15 15(2)使用闭回路法可得负检验数为=-1,故令进基(3)使用闭回路法进行调整知出基,便得新的运输方案如表2表215 销地 运价产地 B1 B2 B3 B4产量15A1A2A3 3 5 2 9 4 7 5 12 6 9 10 11 20 15 25销量 10 20 15 15(4)再进行检验知,所有检验数,故得最优运销图如图1-3:A3B4B21015A2B2B1105A1B3B2515图1-3最小费用为385(百元)。3、设某小型工厂使用两种原料(代号为A,B)生产甲、乙两种产品,要求所生产产品的数量是正整数,按工艺,生产每件产品甲需要原料A,B依次为6、5个单位,生产每件产品乙需要原料A,B依次为2、9个单位,两种原料的供给量依次为17和44个单位,创造的产值均为1(万元),试建立其生产规划模型,并回答以下问题:(1) 产值最大的生产方案是甚麽?最大产值是多少?方案是否有可选择余地?(2) 原料的利用情况.4、如图是某村镇9个自然屯(用表示)间可架设有线电视线路的最短距离示意图,边旁数字为距离(单位:).若每的架设费用是定数20元/,试协助有线电视网络公司设计一个既使得各村屯都能看到有线电视又使架设费用最低的路线,并求出最小架设费用.解:由题意可知,只需求出该网络图的最小树即可.利用破圈法容易得树形图(图3):图3 v1v2v3v4v6v5v8v7v943243425故得架设路线为:总架线长度为27km,故总架设费用为 (万元)5、某公司自国外A厂家进口一部分精密机器.由厂家到出口港有三个港口B1、B2、B3供选择,运费依次为20,40和30;而进口港也有三个可供选择,代号为C1,C2和C3,运费为:B1到C1、C2、C3依次为70、40、60,B2到C1、C2、C3依次为30、20、40,B3到依次为40、10、50;进口后可经由两个城市D1、D2运抵目的地E,从C1、C2、C3到D1、D2的运费为10和40,60和30,30和30;从D1、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论