【步步高】高考数学一轮复习 第3章 章末检测备考练习 苏教版.doc_第1页
【步步高】高考数学一轮复习 第3章 章末检测备考练习 苏教版.doc_第2页
【步步高】高考数学一轮复习 第3章 章末检测备考练习 苏教版.doc_第3页
【步步高】高考数学一轮复习 第3章 章末检测备考练习 苏教版.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末检测一、填空题1下列函数中,在区间(0,)上为增函数的是_(填序号)yln(x2);y;yx;yx.2若a0,r是实数集,则(rb)a_.4函数ylog(x1)(164x)的定义域为_5幂函数的图象过点,则它的单调递增区间是_61.5、23.1、2 的大小关系为_7有浓度为90%的溶液100 g,从中倒出10 g后再倒入10 g水称为一次操作,要使浓度低于10%,这种操作至少应进行的次数为_(参考数据:lg 20.301 0,lg 30.477 1)8函数yax(a0,且a1)的图象可能是_(填图象编号)9函数f(x)x22xb的零点均是正数,则实数b的取值范围是_10若函数f(x)若f(a)f(a),则实数a的取值范围是_11函数f(x)ax13的图象一定过定点p,则p点的坐标是_12函数f(x)log5(2x1)的单调增区间是_13设函数f(x)是定义在r上的奇函数,若当x(0,)时,f(x)lg x,则满足f(x)0的x的取值范围是_14若函数f(x)axxa(a0,且a1)有两个零点,则实数a的取值范围为_二、解答题15已知幂函数yxm22m3(mz)的图象与x轴、y轴都无交点,且关于原点对称,求m的值16已知x1且x,f(x)1logx3,g(x)2logx2,试比较f(x)与g(x)的大小17已知f(x)为定义在1,1上的奇函数,当x1,0时,函数解析式f(x)(ar)(1)写出f(x)在0,1上的解析式;(2)求f(x)在0,1上的最大值18已知函数f(x)2x.(1)若f(x)2,求x的值;(2)若2tf(2t)mf(t)0对于t1,2恒成立,求实数m的取值范围19已知函数f(x)的解析式为f(x).(1)求f(),f(),f(1)的值;(2)画出这个函数的图象;(3)求f(x)的最大值20设函数f(x)3ax22(ac)xc (a0,a,cr)(1)设ac0.若f(x)c22ca对x1,)恒成立,求c的取值范围;(2)函数f(x)在区间(0,1)内是否有零点,有几个零点?为什么?答案12.3(0,14(1,0)(0,2)5(,0)621.523.172189(0,110(1,0)(1,)11(1,4)12.13(1,0)(1,)14(1,)15解幂函数yxm22m3(mz)的图象与x轴、y轴都无交点,m22m30,1m3;mz,m22m3z,又函数图象关于原点对称,m22m3是奇数,m0或m2.16解f(x)g(x)1logx32logx21logxlogxx,当1x时,x1,logxx时,x1,logxx0.即当1x时,f(x)时,f(x)g(x)17解(1)f(x)为定义在1,1上的奇函数,且f(x)在x0处有意义,f(0)0,即f(0)1a0.a1.设x0,1,则x1,0f(x)4x2x.又f(x)f(x),f(x)4x2x.f(x)2x4x.(2)当x0,1,f(x)2x4x2x(2x)2,设t2x(t0),则f(t)tt2.x0,1,t1,2当t1时,取最大值,最大值为110.18解(1)当x0,xlog2(1)(2)当t1,2时,2tm0,即m(22t1)(24t1)22t10,m(22t1)t1,2,(122t)17,5,故m的取值范围是5,)19解(1)1,f()285,01,f()5.10,f(1)352.(2)在函数y3x5的图象上截取x0的部分,在函数yx5的图象上截取01的部分图中实线组成的图形就是函数f(x)的图象(3)由函数图象可知,当x1时,f(x)的最大值为6.20解(1)因为二次函数f(x)3ax22(ac)xc的图象的对称轴为x,由条件ac0,得2aac,故c22ca对x1,)恒成立,则f(x)minf(1)c22ca,即acc22ca,得c2c0,所以0c1.(2)若f(0)f(1)c(ac)0,则c0,或a0,f(1)ac0,则

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论