辽宁省凌海市石山镇中考数学复习 第一部分 系统复习 成绩基石 第3章 第13讲 二次函数的实际应用课件.ppt_第1页
辽宁省凌海市石山镇中考数学复习 第一部分 系统复习 成绩基石 第3章 第13讲 二次函数的实际应用课件.ppt_第2页
辽宁省凌海市石山镇中考数学复习 第一部分 系统复习 成绩基石 第3章 第13讲 二次函数的实际应用课件.ppt_第3页
辽宁省凌海市石山镇中考数学复习 第一部分 系统复习 成绩基石 第3章 第13讲 二次函数的实际应用课件.ppt_第4页
辽宁省凌海市石山镇中考数学复习 第一部分 系统复习 成绩基石 第3章 第13讲 二次函数的实际应用课件.ppt_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一部分系统复习成绩基石 第三章函数及其图象第13讲二次函数的实际应用沪科版 九年级上册第21章二次函数与反比例函数21 4 21 6人教版 九年级上册第22章二次函数22 3北师版 九年级下册第2章二次函数2 4 考点梳理过关 考点1实物抛物线的应用6年1考 考点2二次函数在销售问题中的应用6年2考 考点3二次函数在面积问题中的应用6年1考 考点4灵活选用适当的函数模型6年1考 典型例题运用 类型1实物抛物线 例1 2017 金华中考 甲 乙两人进行羽毛球比赛 羽毛球飞行的路线为抛物线的一部分 如图 甲在o点上正方1m的p处发出一球 羽毛球飞行的高度y m 与水平距离x m 之间满足函数表达式y a x 4 2 h 已知点o与球网的水平距离为5m 球网的高度为1 55m 1 当a 时 求h的值 通过计算判断此球能否过网 2 若甲发球过网后 羽毛球飞行到点o的水平距离为7m 离地面的高度为m的q处时 乙扣球成功 求a的值 思路分析 1 把 0 1 a 代入y a x 4 2 h即可求得h的值 把x 5代入y a x 4 2 h可求得网球的高度 与1 55m比较大小 作出正确的判断 2 由题意 把点 0 1 7 代入y a x 4 2 h即可求得a的值 自主解答 技法点拨 利用二次函数解决实物抛物线形问题时 要把实际问题中的已知条件转化为点的坐标 代入解析式求解 最后根据求解的结果转化为实际问题的答案 解二次函数应用题的步骤及关键点见下表 变式运用 2017 德州中考 随着新农村的建设和旧城的改造 我们的家园越来越美丽 小明家附近广场中央新修了个圆形喷水池 在水池中心竖直安装了一根高为2米的喷水管 它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高 水柱落地处离池中心3米 1 请你建立适当的平面直角坐标系 并求出水柱抛物线的函数解析式 2 求出水柱的最大高度是多少 解 1 如图 以水管与地面交点为原点 原点与水柱落地点所在直线为x轴 水管所在直线为y轴 建立平面直角坐标系 由题意可设抛物线的函数解析式为y a x 1 2 h 0 x 3 抛物线过点 0 2 和 3 0 将其代入抛物线解析式 得 类型2二次函数在销售问题中的应用 例2 2017 黄冈中考 月电科技有限公司用160万元 作为新产品的研发费用 成功研制出了一种市场急需的电子产品 已于当年投入生产并进行销售 已知生产这种电子产品的成本为4元 件 在销售过程中发现 每年的年销售量y 万件 与销售价格x 元 件 的关系如图所示 其中ab为反比例函数图象的一部分 bc为一次函数图象的一部分 设公司销售这种电子产品的年利润为z 万元 注 若上一年盈利 则盈利不计入下一年的年利润 若上一年亏损 则亏损计作下一年的成本 1 请求出y 万件 与x 元 件 之间的函数关系式 2 求出第一年这种电子产品的年利润z 万元 与x 元 件 之间的函数关系式 并求出第一年年利润的最大值 3 假设公司的这种电子产品第一年恰好按年利润z 万元 取得最大值时进行销售 现根据第一年的盈亏情况 决定第二年将这种电子产品每件的销售价格x 元 定在8元以上 x 8 当第二年的年利润不低于103万元时 请结合年利润z 万元 与销售价格x 元 件 的函数示意图 求销售价格x 元 件 的取值范围 思路分析 1 求y 万件 与x 元 件 之间的函数关系式 结合图象 是一个分段函数 已知点坐标 运用待定系数法可求 2 根据 年利润 年销售量 每件的利润 成本 160万元 可求出年利润z 万元 与x 元 件 之间的函数关系式 但要注意的是和第 1 问一样是分段函数 根据每段的函数特征分别求出最大值 再比较这两个数值的大小 从而确定第一年的年利润的最大值 3 根据条件 第二年的年利润不低于103万元 可得z 103 这是一个一元二次不等式 题目提示观察年利润z 万元 与销售价格x 元 件 的函数示意图 从而得出结果 技法点拨 二次函数在销售问题中的应用有以下两种常考类型 1 单纯二次函数的实际应用 2 与一次函数结合的实际应用 出题形式有三种 1 以某种产品的销售为背景 2 以公司的工作业绩为背景 3 以某公司装修所需材料为背景 设问方式主要有 1 列函数关系式并求值 2 求最优解 3 求最大利润及利润最大时自变量的值 4 求最小值 5 选择最优方案 类型3二次函数在面积问题中的应用 例3 2017 潍坊中考 工人师傅用一块长为10dm 宽为6dm的矩形铁皮制作一个无盖的长方体容器 需要将四角各裁掉一个正方形 厚度不计 1 在图中画出裁剪示意图 用实线表示裁剪线 虚线表示折痕 并求长方体底面面积为12dm2时 裁掉的正方形边长多大 2 若要求制作的长方体的底面长不大于底面宽的五倍 并将容器进行防锈处理 侧面每平方分米的费用为0 5元 底面每平方分米的费用为2元 裁掉的正方形边长多大时 总费用最低 最低为多少 思路分析 1 矩形四角裁去的四个同样大小的小正方形画成实线 内部的四个顶点用虚线顺次连接 即得裁剪示意图 设裁掉的正方形的边长为xdm 表示长方体底面的两边长 再利用面积公式构建一元二次方程求解 2 利用长不大于宽的5倍 构建一元一次不等式确定裁掉的正方形的边长x dm 的取值范围 然后设总费用为w 元 根据题设条件列出w 元 与x dm 的二次函数解析式 利用二次函数的最值解决该实际问题 解 1 如图所示 设裁掉的正方形的边长为xcm 由题意 得 10 2x 6 2x 12 即x2 8x 12 0 解得x1 2 或x2 6 舍去 裁掉的正方形边长为2dm 底面积为12dm2 2 长不大于宽的5倍 10 2x 5 6 2x 解得x 2 5 x 0 0 x 2 5 设总费用为w 由题意可知 w 0 5 2x 16 4x 2 10 2x 6 2x 4x2 48x 120 4 x 6 2 24 对称轴为x 6 开口向上 当0 x 2 5时 w随x的增大而减小 当x 2 5时 wmin 25元 当裁掉边长为2 5dm的正方形时 总费用最低 为25元 类型4灵活选用适当的函数模型 例4 2017 成都中考 随着地铁和共享单车的发展 地铁 单车 已成为很多市民出行的选择 李华从文化宫站出发 先乘坐地铁 准备在离家较近的a b c d e中的某一站出地铁 再骑共享单车回家 设他出地铁的站点与文化宫距离为x 单位 千米 乘坐地铁的时间y1 单位 分钟 是关于x的一次函数 其关系如下表 1 求y1关于x的函数表达式 2 李华骑单车的时间 单位 分钟 也受x的影响 其关系可以用y2 x2 11x 78来描述 请问 李华应选择在哪一站出地铁 才能使他从文化宫回到家里所需的时间最短 并求出最短时间 自主解答 1 设乘坐地铁的时间y1关于x的一次函数表达式为y1 kx b 把x 8 y1 18 x 10 y1 22代入 y1关于x的函数表达式是y1 2x 2 2 设从文化宫到家里所需的时间为y 则y y1 y2 当x 9时 y最小 李华选择从b地铁口出站 才能使他从文化宫到家里所需的时间最短为分钟 六年真题全练 命题点二次函数的实际应用 考向一增长率问题 1 2014 安徽 12 5分 某厂今年一月份新产品的研发资金为a元 以后每月新产品的研发资金与上月相比增长率都是x 则该厂今年三月份新产品的研发资金y 元 关于x的函数关系为y a 1 x 2由一月份的研发资金为a元且增长率为x 可得二月份研发资金为a 1 x 元 三月份的研发资金为y a 1 x 1 x 即y a 1 x 2 二次函数的应用注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查 在近6年安徽中考中 本节命题难度较大 考查的重点是二次函数的实际应用问题 题型以解答题为主 2 2012 安徽 23 14分 如图 排球运动员站在点o处练习发球 将球从o点正上方2m的a处发出 把球看成点 其运行的高度y m 与运行的水平距离x m 满足关系式y a x 6 2 h 已知球网与点o的水平距离为9m 高度为2 43m 球场的边界距点o的水平距离为18m 1 当h 2 6时 求y与x的关系式 2 当h 2 6时 球能否越过球网 球会不会出界 请说明理由 3 若球一定能越过球网 又不出边界 求h的取值范围 考向二抛物线型问题 得分要领 抛物线型实际问题的解题步骤 1 建立平面直角坐标系 如果题目没有给出平面直角坐标系 则根据题意 建立恰当的坐标系 建系的原则一般是把顶点作为坐标原点 2 设函数表达式 根据所建立的坐标系 设出表达式 3 求表达式 依据实际问题中的线段的长 确定某些关键点的坐标 代入函数表达式 求出系数 确定函数表达式 4 解决实际问题 把问题转化为已知抛物线上点的横坐标 或纵坐标 求其纵坐标 或横坐标 再转化为线段的长 解决实际问题 考向三几何结合型问题 3 2015 安徽 22 12分 为了节省材料 某水产养殖户利用水库的岸堤 岸堤足够长 为一边 用总长为80m的围网在水库中围成了如图所示的 三块矩形区域 而且这三块矩形区域的面积相等 设bc的长度为xm 矩形区域abcd的面积为ym2 1 求y与x之间的函数关系式 并注明自变量x的取值范围 2 x为何值时 y有最大值 最大值是多少 考向四最大利润问题 4 2017 安徽 22 12分 某超市销售一种商品 成本每千克40元 规定每千克售价不低于成本 且不高于80元 经市场调查 每天的销售量y 千克 与每千克售价x 元 满足一次函数关系 部分数据如下表 1 求y与x之间的函数表达式 2 设商品每天的总利润为w 元 求w与x之间的函数表达式 利润 收入 成本 3 试说明 2 中总利润w随售价x的变化而变化的情况 并指出售价为多少元时获得最大利润 最大利润是多少 解 1 根据题意 设y kx b 由表中的数据 得所以y 2x 200 40 x 80 2 根据题意 得w y x 40 2x 200 x 40 2x2 280 x 8000 40 x 80 3 由 2 可知 w 2 x 70 2 1800 因为a 2 0 所以当售价x在满足40 x 70的范围内 利润w随着x的增大而增大 当售价在满足70 x 80的范围内 利润w随着x的增大而减小 所以当x 70时 利润w取得最大值 最大利润为1800元 5 2013 安徽 22 12分 某大学生利用暑假40天社会实践参与了一家网店的经营 了解到一种成本为20元 件的新型商品在第x天销售的相关信息如下表所示 1 请计算第几天该商品的销售单价为35元 件 2 求该网店第x天获得的利润y关于x的函数关系式 3 这40天中 该网店第几天获得的利润最大 最大利润是多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论