已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点3.知道对数函数是一类重要的函数模型4.了解指数函数yax与对数函数ylogax互为反函数(a0,且a1)备考知考情通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题主要考查对数运算、换底公式等及对数函数的图象和性质对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理名师一号P27注意:知识点一 对数及对数的运算性质1.对数的概念 一般地,对于指数式abN,我们把“以a为底N的对数b”记作logaN,即blogaN(a0,且a1)其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”注意:(补充)关注定义-指对互化的依据2对数的性质与运算法则(1)对数的运算法则如果a0且a1,M0,N0,那么loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR);logamMnlogaM.(2)对数的性质alogaNN;logaaNN (a0,且a1)(3)对数的重要公式换底公式:logbN(a,b均大于零且不等于1);logab,推广logablogbclogcdlogad.注意:(补充)特殊结论:知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!) a1 0a0,a1,N0)练习:(补充)已知求答案: 例3.名师一号P28 高频考点 例1(2)已知函数f(x)则f(f(1)f的值是()A5B3C1D.因为f(1)log210,所以f(f(1)f(0)2.因为log30,所以f3131213.所以f(f(1)f235.二、对数函数的图象及性质的应用例1. (补充)求下列函数的定义域 (1)y. (2)ylog(x1)(164x)解析:(1)由函数定义知: 即x1.故原函数的定义域是x|x1(2)由函数有意义知即1x2,且x0.故原函数的定义域为x|1x0,或0x0恒成立,a24a04a0,即a的范围为(4,0)例2.名师一号P27 对点自测5(2014重庆卷)函数f(x)log2log (2x)的最小值为_解析根据对数运算性质,f(x)log2log (2x)log2x2log2(2x)log2x(1log2x)(log2x)2log2x2,当x时,函数取得最小值.注意:换元后“新元”的取值范围练习:1、求下列函数的值域(1)ylog(x22x4) 答案1,)(2)f(x)logx3log2x22解析令tlog2x,x21t1.函数化为yt26t2(t3)271t1.当t1,即x时,ymax9.当t1,即x2时,ymin3,函数的值域为3,9.2、已知集合 求实数a的取值范围分析当且仅当f(x)x2axa的值能够取遍一切正实数时,ylog2(x2axa)的值域才为R.而当0恒成立,仅仅说明函数定义域为R,而f(x)不一定能取遍一切正实数(一个不漏)要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x轴有交点(但此时定义域不再为R)正解要使函数ylog2(x2axa)的值域为R,应使f(x)x2axa能取遍一切正数,要使f(x)x2axa能取遍一切正实数,应有a24a0,a0或a4,所求a的取值范围为(,40,)例3. (1)名师一号P27 对点自测4已知a0且a1,则函数yloga(x2 015)2的图象恒过定点_解析令x2 0151,即x2 014时,y2,故其图象恒过定点(2 014,2)练习: 无论a取何正数(a1),函数恒过定点 【答案】注意:对数函数图象都经过定点(1, 0) 例3. (2) (补充)如右下图是对数函数ylogax,ylogbx,ylogcx,ylogdx的图象,则a、b、c、d与1的大小关系是 ()Aab1cd Bba1dcC1abcd Dab1dc【答案】B在上图中画出直线y1,分别与、交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知cd1a0,且a1)的图象如图所示,则下列函数图象正确的是() 答案: B.例4.名师一号P28 高频考点 例3已知函数f(x)log4(ax22x3)(1)若f(1)1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由解析:(1)f(1)1,log4(a5)1,因此a54,a1.这时f(x)log4(x22x3)由x22x30得1xbc Bbac Cacb Dcab【规范解答】方法1:在同一坐标系中分别作出函数ylog2x,ylog3x,ylog4x的图象,如图所示由图象知:log23.4log3log43.6.方法2:log3log331,且3.4,log3log33.4log23.4.log43.61,log43.6log3log43.6.由于y5x为增函数,故acb.注意:名师一号P28 问题探究 问题3比较幂、对数大小有两种常用方法:数形结合;找中间量结合函数单调性练习:1、若0xy1,则()A3y3x Blogx3logy3Clog4xlog4y D. xy解析:0xy1,由y3u为增函数知3x3y,排除A;log3u在(0,1)内单调递增,log3xlog3ylogy3,B错由ylog4u为增函数知log4xy,排除D.答案:C2、对于0a1,给出下列四个不等式loga(1a)loga(1);a1aa.其中成立的是()A与 B与C与 D与答案:D 解析:由于0a1a1aloga(1),a1aa.选D.四、对数方程与不等式例1.(1)(补充)方程log3(x210)1log3x的解是_答案x5解析原方程化为log3(x210)log3(3x),由于log3x在(0,)上严格单增,则x2103x,解之得x15,x22.要使log3x有意义,应有x0,x5.注意: 依据对数函数恒单调求解。例1.(2) 温故知新P32 第9题 已知函数,且关于的方程有且只有一个实根,则实数的取值范围是 练习:温故知新P31 第5、6题 温故知新P29 第10题例2.(1) (补充)已知0a1,loga(1x)logax则()A0x1 Bx C0x D.x1分析:底数相同,真数不同,可利用对数函数ylogax的单调性脱去对数符号转化为整式不等式求解解析:0a1时,ylogax为减函数,原不等式化为,解得0x.例2.(2)(补充)设0a1,函数f(x)loga(a2x2ax2),则使f(x)0的x取值范围是()A(,0) B(0,)C(,loga3) D(loga3,)解析:0a1loga(a2x2ax2)1a2x2ax30ax3或ax1(舍)xloga3,故选C.注意: 关于含对数式(或指数式)的不等式求解, 一般都是用单调性或换元法求解例2.(3)名师一号P28 高频考点 例2(2)当0x时,4xlogax,则a的取值范围是()A. B. C(1,) D(,2)解析:由题意得,当0a1时,要使得4xlogax,即当0x时,函数y4x的图象在函数ylogax图象的下方又当x时,42,即函数y4x的图象过点,把点代入函数ylogax,得a,若函数y4x的图象在函数ylogax图象的下方,则需a1时,不符合题意,舍去所以实数a的取值范围是.答案: B.练习:当时,不等式恒成立,则实数的取值范围是_。xy012y1=(x-1)2y2=logaxP (2,1)分析:若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过观察图象求解。解:设,则的图象为右图所示的抛物线,要使对一切,恒成立,, 观察图象得:只需即可。故,取值范围是。变式: 名师一号P28 变式思考2(2)不等式logax(x1)2恰有三个整数解,则a的取值范围为()A, B, )C(1, D(1, 解析:不等式logax(x1)2恰有三个整数解,画出示意图可知a1,其整数解为2,3,4,则应满足得a0.原方程有两个实数解,即方程t22t3k10有两个正实数解,则,解得k. 练习3:对任意的恒成立,求的范围.解: 由题意即对任意的恒成立 即对任意的恒成立 练习4:已知函数的定义域为,(1)求 (2)当 时,求 的最小值.解 (1) (2) =,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同收尾过程 合同管理过程
- 赠汪伦课件教学
- 《刑法分论概述》课件
- 车辆指标租赁协议书
- 关于纳粹德国元首希特勒的历史资料课件
- ABB工业机器人应用技术 故障诊断与维护 课件任务3-8 工业机器人本体电路图解析
- 《生命与和平相爱好》课件
- 学生租房协议书(2篇)
- 2023年安徽省宿州市公开招聘警务辅助人员(辅警)笔试摸底备战测试(1)卷含答案
- 2023年湖北省襄樊市公开招聘警务辅助人员(辅警)笔试专项训练题试卷(3)含答案
- 中央2024年国家医疗保障局大数据中心招聘应届生笔试历年典型考题及考点剖析附带答案详解
- 透水沥青混凝土路面技术规程DBJ-T 15-157-2019
- 2023-2024学年湖北省黄石市黄石港区八年级(上)期末数学试卷(含解析)
- 诺贝尔生理学或医学奖史话智慧树知到期末考试答案章节答案2024年华中师范大学
- 职业素养提升第2版(大学生职业素养指导课程)全套教学课件
- 声音的产生省公开课一等奖新名师课比赛一等奖课件
- indesign典型实例第一章
- 新时代大学生劳动教育智慧树知到期末考试答案章节答案2024年延边大学
- 离心式压缩机设计-离心压缩机气动及结构设计含6张CAD图
- TB 10003-2016 铁路隧道设计规范 含2024年4月局部修订
- 婴幼儿智能发育测试
评论
0/150
提交评论