




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形中位线定理,课,1,A。,。B,C。,M。,。N,如图,在A、B外选一点C,连结AC和BC,,A、B两点被池塘隔开,现在要测量出A、B两点间的距离,但又无法直接去测量,怎么办?,并分别找出AC和BC的中点M、N,如果能测量出MN的长度,也就能知道AB的距离了。,今天这堂课我们就要来探究其中的学问。,2,三角形的中位线和三角形的中线不同,C,B,A,F,E,D,定义:连接三角形两边中点的线段叫做三角形的中位线,演示,AF是ABC的中线,我们把DE叫ABC的中位线,3,注意:,三角形的中位线是连结三角形两边中点的线段,三角形的中线是连结一个顶点和它的对边中点的线段,区分三角形的中位线和中线:,理解三角形的中位线定义的两层含义:,DE为ABC的中位线,D、E分别为AB、AC的中点,DE为ABC的中位线,D、E分别为AB、AC的中点,一个三角形共有三条中位线。,定义,A,B,C,D。,。E,。F,4,观察变化中的三角形中位线有何特征?,5,三角形的中位线平行于第三边,并且等于第三边的一半,A,B,C,D,E,F,已知:在ABC中,DE是ABC的中位线求证:DEBC,且.,证明:如图,延长DE到F,使EF=DE,连结CF.DE=EF、AED=CEF、AE=ECADECFEAD=FC、A=CEFABFC又AD=DBBDCF且BD=CF所以,四边形BCFD是平行四边形DEBC且,定理,6,三角形中位线定理,三角形的中位线平行于第三边,并且等于它的一半。,AD=DB,AE=ECDEBC,,证明平行问题证明一条线段是另一条线段的2倍或,用途,A,B,C,D,E,7,1.如图1:在ABC中,DE是中位线(1)若ADE=60,则B=度,为什么?(2)若BC=8cm,则DE=cm,为什么?,2.如图2:在ABC中,D、E、F分别是各边中点AB=6cm,AC=8cm,BC=10cm,则DEF的周长=cm,图1,图2,60,4,12,A,B,C,D。,。E,B,A,C,D。,。E,。F,5,4,3,8,3.梯形ABCD中ADBC,对角线AC、BD相交于点O,A、B、C、D分别是AO、BO、CO、DO中点,则四边形ABCD是_若梯形ABCD周长为10,则四边形ABCD的周长为_,梯形,5,9,4.在ABC中AD=BD,BE=EC,AF=FC求证:AE,DF互相平分,10,A。,。B,C。,M。,。N,4.在A、B外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果能测量出DE的长度,也就能知道AB的距离了。为什么?如果测得MN=20m,那么A、B两点间的距离是多少?为什么?,20,40,随着学习的不断深入,同学们将会有更多的办法来解决这个问题,11,顺次连结一个四边形各边中点,会得到什么样的图形呢?,12,例1,例1.求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形,求证:四边形EFGH是平行四边形,证明:连结AC,AH=HDCG=GD,HGAC,(三角形的中位线平行于第三边,并且等于它的一半),同理EFAC,HGEF且HG=EF,四边形EFGH是平行四边形,13,2.连结BD证:EHFG,EH=FG,3.连结AC、BD,证:EFHG,EHFG4.连结AC、BD,证:EF=HG,EH=FG,1.连结AC,证:EFHG,EF=HG,猜想:顺次连结四边形各边中点所得的四边形是什么形状与原四边形的有关?,14,小结,三角形中位线定义,三角形中位线定理,作业,平行线间的距离,15,三角形的中位线是连结三角形两边中点的线段,三角形的中线是连结一个顶点和它的对边中点的线段,三角形的中位线是三角形中一种重要的线段,它与三角形的中线不同:,理解三角形的中位线定义的两层含义:,DE为ABC的中位线,D、E分别为AB、AC的中点,DE为ABC的中位线,D、E分别为AB、AC的中点,一个三角形共有三条中位线。,定义,16,如果DE是ABC的中位线那么DEBC,DE=1/2BC,证明平行证明一条线段是另一条线段的2倍或1/2解决“中点问题”,A,B,C,D,E,三角形的中位线定理是三角形的一个重要性质定理:三角形的中位线平行于第三边,并且等于第三边的一半.,定理的主要用途:,17,必做题:P93页1、2、3自选一个顺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地域文化视角下的城市更新理论与实践
- 施工质量管理体系构建与实施
- 2024年2月煤炭堆场防风林带维护责任租赁生态附件
- 年终总结中重要项目
- 铁路施工组织管理指南
- 华夏有巢2024可持续发展报告
- 2024户外运动线上消费发展报告
- 护理人员素质的要求
- 美团运营升职述职报告
- 我图网护理总结
- 压裂施工安全操作规定(正式)
- 生理卫生教学【青春期男生性教育】走向成熟课件
- 人工呼吸的三种方式和操作方法课件
- 项目基坑坍塌事故专项应急预案桌面演练脚本
- 危险化学品MSDS(氮气)
- 无创通气常用模式与参数调节
- 清远市城市树木修剪技术指引(试行)
- GB∕T 8427-2019 纺织品 色牢度试验 耐人造光色牢度:氙弧
- 退休人员实行社区管理申请书
- 全国同等学力工商管理大纲重点整理
- 机耕道监理实施细则完整
评论
0/150
提交评论