已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 New Tools Maximize New Machine Designs The primary tooling concerns when machining aluminum are: minimizing the tendency of aluminum to stick to the tool cutting edges; ensuring there is good chip evacuation form the cutting edge; and ensuring the core strength of the tools is sufficient to withstand the cutting forces without breaking. Technological developments such as the Makino MAG-Series machines have made tooling vendors rethink the any state-of-the-art machine technology. It is vital to apply the right tooling and programming concepts. Materials coatings and geometry are the three elements in tool design that interrelate to minimize these concerns. If these three elements do not work together, successful high-speed milling is not possible. It is imperative to understand all three of these elements in order to be successful in the high-speed machining of aluminum. Minimize Built-Up Edge When machining aluminum, one of the major failure modes of cutting tools the material being machined adheres to the tool cutting edge. This condition rapidly degrades the cutting ability of the tool. The built-up edge that is generated by the adhering aluminum dulls the tool so it can no longer cut through the material. Tool material selection and tool coating selection are the two primary techniques used by tool designers to reduce occurrence of the built-up edge. The sub-micron grain carbide material requires a high cobalt concentration to achieve the fine grain structure and the materials strength properties. Cobalt reacts with aluminum at elevated temperatures, which causes the aluminum to chemically bond to the exposed cobalt of the tool material. Once the aluminum starts to adhere to the tool, it quickly forms a built-up edge on the tool rendering it ineffective. The secret is to find the right balance of cobalt to provide adequate material strength, while minimizing the exposed cobalt in the tools for aluminum adherence during the cutting process. This balance is achieved using coarse-grained carbide that provides a tool of sufficient hardness so as to not dull quickly when machining aluminum while minimizing adherence. Tool Coatings The second tool design element that must be considered when trying to minimize the built-up edge is the tool coating. Tool coating choices include TiN, TiAIN, AITiN, chrome nitrides, zirconium nitrides, diamond, and diamond-like coatings(DLC). With 2 so many choices, aerospace milling shops need to know which one works best in an aluminum high-speed machining application. The Physical Vapor Deposition (PVD) coating application process on TiN, TiCN, TiAIN, and AITiN tools makes them unsuitable for an aluminum application. The PVD coating process creates two modes for aluminum to bond to the toolsthe surface roughness and the chemical reactivity between the aluminum and the tool coating. The PVD process results in surface that is rougher that the substrate material to which it is applied. The surface”peaks and valleys” created by this process causes aluminum to rapidly collect in the valleys on the tool. In addition, the PVD coating is chemically reactive to the aluminum due to its metallic crystal and ionic crystal features. A TiAIN coating actually contains aluminum, which easily bonds with a cutting surface of the same material. The surface roughness and chemical reactivity attributes will cause the tool and work piece to stick together, thus creating the built-up edge. In testing performed by OSG Tap and Die, it was discovered that when machining aluminum at very high speeds, the performance of an uncoated coarse-grained carbide tool was superior to that of one coated with TiN, Ticn, TiAIN, or ALTiN. This testing does not mean that all tool coatings will reduce the tool performance. The diamond and DLC coatings result in a very smooth chemically inert surface. These coatings have been found to significantly improve tool life when cutting aluminum materials. The diamond coatings were found to be the best performing coatings, but there is a considerable cost related to this type of coating. The DLC coatings provide the best cost for performance value, adding about 20%-25%to the total tool cost. But, this coating extends the tool life significantly as compared to an uncoated coarse-grained carbide tool. Geometry The rule of thumb for high-speed aluminum machining tooling designs is to maximize space for chip evacuation. This is because aluminum is a very soft material, and the federate is usually increased which creates more and bigger chips. The Makino MAG-Series aerospace milling machines, such as the MAG4, require an additional consideration for tool geometry-tool strength. The MAG-Series machines with their powerful 80-hp spindles will snap the tools if they are not designed with sufficient core strength. In general, sharp cutting edges should always be used to avoid aluminum 3 elongation. A sharp cutting edge will create high shearing and also high surface clearance, creating a better surface finish and finish and minimizing chatter or surface vibration. The issue is that it is possible to achieve a sharper cutting edge with the fine-grained carbide material than the coarse grained material. But due to aluminum adherence to the fine-grained material, it is not possible to maintain that edge for very long. Coarse Compromise The coarse grained material appears to be the best compromise. It is a strong material that can have a reasonable cutting edge. Test results show it is able to achieve a very long tool life with good surface finish. The maintenance of the cutting edge is improved using an oil mist coolant through the tool. Misting gradually cools down the tools, eliminating thermal shock problems. The helix angle is an additional tool geometry consideration. Traditionally when machining aluminum a fool with a high helix angle has been used. A high helix angle lifts the chip away from the part more quickly, but increases the friction and heat generated as result of the cutting action. A high helix angle is typically used on a tool with a higher number of flutes to quickly evacuate the chip from the part. When machining aluminum at very high speeds the heat created by the increased friction may cause the chips to weld to the tool. In addition, a cutting surface with a high helix angle will chip more rapidly that a tool with a low helix angle. A tool design that utilizes only two flutes enables both a low helix angle and sufficient chip evacuation area. This is the approach that has proven to be the most successful in extensive testing performed by OSG when developing the new tooling line, the maxal. 4 新工具使新机器设计最优 当加工铝时,我们主要关心的是:铝粘住加工切削边缘的倾向;保证有好的碎片排屑形成切削边缘;和保证工具有足够的中心强度来承受切削力而不被破坏。 技术发展,比如: Makino MAG 系列,已经使工具商重新考虑任何工艺水平的机器技术。用正确的加工和编程思路是很重要的。 材料,涂料和几何形状是与减小我们所关注问题相关系的工具设计的三个因素。如果这些因素不能一起很好的配合,成功的调整磨削是不可能的。为了成功进行高速铝加工,理解这三个因素是很必要的。 使组合边缘最小化 当加工铝时, 一个失败的切削工具模式是,被加工的材料粘住工具切削边缘。这种情况会很快削弱工具的切削能力。由粘着的铝形成的组合边缘会导致工具变钝,以至不能切削材料。工具材料选择和工具涂料选择是被工具设计者用来减小组合边缘出现的主要工艺。 亚微米微粒碳化物材料要求很高的钴浓度来获得良好的微粒结构和材料强度属性。随着温度的升高,钴与铝发生反应,钴使铝与暴露的工具材料碳化物相粘合。一旦铝开始粘住工具,铝会在快速的在工具上形成组合边缘,使工具不可用。 在切削的进程中,减小铝粘合着的工具的暴露碳化物的秘诀就是找到正确的碳化物的平衡来 提供足够的材料强度。在加工铝时,为了减小粘附,使用能提供足够硬度的 纹理粗糙的碳化物来获得平衡,来使变钝变慢。 工具涂料 当尝试减小组合边缘时,第二个应该考虑的工具设计因素是工具涂料。工具涂料的选择包括: TiN, TiAIN, AITiN,铬氮化物,锆氮化物,钻石和钻石般的涂料( DLC)。拥有这么多的选择,航空航天磨削商店需要知道在铝的高速加工应用中哪一种工作最有效。 TiN, TiCN, TiAIN, 和 AITiN 工具的 PVD 涂装应用进程使这些选项不合适铝的应用。 PVD涂装进程建立了两个使铝粘住工具的模式 -表面的粗糙程度和铝与工具涂料之间的化学反应。 PVD 进程形成了一个表面,这 5 表面是比底层材料更粗糙的。由这个进程形成的表面“凹凸”使工具中的铝在凹处快速集结。由于涂料有金属晶体和铁晶体特征, PVD 涂料是可以和铝发生化学反应的。一种 TiAIN 涂料通常是包含铝的,这铝很容易和相同材料的切削表面粘合。表面粗糙度和化学反应特性将会导致工具和工作片体粘在一起,以致形成组合表面。 OSG Tap and Die 主导的试验中,人们发现在高速加工铝时,一个没有涂染过纹理粗糙的碳化物的工具的表面优于用 TiN, Ticn, TiAIN, 或者 ALTiN 涂染过的工具。这个试验不意味着所有工具涂料将减小工具的表现。钻石和 DLC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术助力下的小学教师心理健康改善实践
- 2025年统编版2024选择性必修2物理上册阶段测试试卷含答案
- 二零二五年度金融科技个人合伙投资合同范例3篇
- 湖南应用技术学院《生物医学建模与仿真》2023-2024学年第一学期期末试卷
- 重庆移通学院《微机原理(含汇编)》2023-2024学年第一学期期末试卷
- 2024版购销石灰粉合同范本
- 二零二五年度茶园承包与茶叶加工设备租赁合同规范3篇
- 二零二五年度防火涂料行业论坛参会代表注册合同范本大全3篇
- 上海地区住宅租赁2024协议样本一览版A版
- 2024起草房地产项目合作开发合同示范文本3篇
- 2023-2024学年安徽省安庆市高一上学期期末联考生物试题(解析版)
- 菏泽2024年山东菏泽市中心血站招聘15人笔试历年典型考点(频考版试卷)附带答案详解版
- 促醒中医治疗
- 广东省广州市海珠区2023-2024学年九年级上学期期末物理试题(含答案)
- 危险化学品目录2023
- 2022版义务教育语文课程标准(2022版含新增和修订部分)
- 精品金属线管布线施工工程施工方法
- 授课课件国家卫健委发布《猴痘诊疗指南(2022年版)》全文内容PPT通用课件
- dinen10278翻译
- 朱东润《中国历代文学作品选》目录简体字版
- 银行授信前须问企业的100个问题
评论
0/150
提交评论