




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的奇偶性,1,一、现实生活中的“美”的事例,下面请欣赏,2,3,4,曹家大院某院,晋祠鼓楼,晋祠硕亭,太谷民居门墩石狮子,5,二、函数图象的“美”,f(x)=x2,f(x)=|x|,问题:1、对定义域中的每一个x,-x是否也在其定义域内?2、f(x)与f(-x)的值有什么关系?3、图象对称性如何?,6,函数y=f(x)的图象关于y轴对称,1、对定义域中的每一个x,-x是也在其定义域内;2、都有f(-x)=f(x),三、偶函数的定义,函数f(x)的定义域为A,如果对任意的xA,都有f(-x)=f(x),那么称函数y=f(x)是偶函数。,7,偶函数定义的理解,8,观察下面两个函数图象及数量关系,-3,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,f(x)=x,9,3,2,1,0,-1,-2,-3,-1,x,-3,-2,0,1,2,3,f(-3)=-3=,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,f(-x)-f(x),f(x)=x,f(-1)=-1,f(-2)=-2=,x,-x,表(3),-f(1),=,-f(2),-f(3),=,f(x)=x,10,0,x,y,1,2,3,-1,-2,-1,1,2,3,-2,-3,f(-3)=-f(3),f(-1)=-1=-f(1),f(-2)=-f(2),f(-x)=-f(x),1,3,2,1,0,-2,-3,x,-1,-1,表(4),11,函数y=f(x)的图象关于原点对称,1、对定义域中的每一个x,-x是也在定义域内;2、都有f(-x)=-f(x),四、奇函数的定义,函数f(x)的定义域为A,如果对任意一个xA,都有f(-x)=-f(x),那么称函数f(x)是奇函数。,12,几点说明:1、偶(奇)函数的实质就是自变量x变为相反数-x时,函数值不变(也变为相反数)。根据函数的奇偶性,函数可划分为四类(偶函数、奇函数、既奇又偶函数、非奇非偶函数),13,非奇非偶函数,如:,y=3x+1,y=x2+2x,14,既是奇函数又是偶函数的函数,如:,y=0,15,2、奇、偶函数定义的逆命题也成立,即若f(x)为奇函数,则f(-x)=-f(x)成立.若f(x)为偶函数,则f(-x)=f(x)成立.,16,是偶函数吗?,问题:,0,x,1,2,3,-1,-2,-3,1,2,3,4,5,6,y,不是。,3、奇、偶函数图象及性质:性质:偶函数的定义域关于原点对称,解:,17,由定义可知,如果一个函数是偶函数,则它的图象关于y轴对称。,y=x2,偶函数的图像特征,反过来,如果一个函数的图象关于y轴对称,则这个函数为偶函数。,18,y=x2,例:,性质:偶函数在关于原点对称的区间上单调性相反。,19,偶函数图象及其性质:定义域关于原点对称;图象关于y轴对称;偶函数在关于原点对称的区间上单调性相反。,20,你能类比说出奇函数的图象及其性质吗?,y,奇函数图象及其性质:定义域关于原点对称;图象关于原点对称;奇函数在关于原点对称的区间上单调性相同。,21,判定函数奇偶性基本方法:定义法:先看定义域是否关于原点对称,再看f(-x)与f(x)的关系.图象法:看图象是否关于原点或y轴对称.,如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.,22,五、应用:例1判断下列函数的奇偶性(你能口答吗?)1.y=-x2+3,xR;2.f(x)=-xx;3.y=-2x+5;4.f(x)=x2,x-2,-1,0,1,3;5.y=0,x-2,2;,是偶函数,是奇函数,不是奇函数也不是偶函数,非奇非偶函数,非奇非偶函数,亦奇亦偶函数,既是奇函数也是偶函数,23,小组合作探究:已知y=f(x)是R上的奇函数,当x0时,f(x)=x2+x+1,求函数的表达式。,24,练习:判断下列函数的奇偶性,(1)解:定义域为Rf(-x)=(-x)4=f(x),即f(-x)=f(x),f(x)偶函数,(2)解:定义域为Rf(-x)=(-x)5=-x5=-f(x),即f(-x)=-f(x),f(x)奇函数,(3)解:定义域为x|x0f(-x)=-x+1/(-x)=-f(x),即f(-x)=-f(x),f(x)奇函数,(4)解:定义域为x|x0f(-x)=1/(-x)2=f(x),即f(-x)=f(x),f(x)偶函数,25,六、课时小结,知识建构,判断或证明函数奇偶性的基本步骤:一看二找三判断。注意:若可以作出函数图象的,直接观察图象是否关于y轴对称或者关于原点对称。,26,七、布置作业,回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物上册 第三单元 第五章 第一节 光合作用吸收二氧化碳释放氧气教学设计 (新版)新人教版
- 三年级数学上册 九 我当小厨师-分数的初步认识 信息窗2 简单分数的大小比较第2课时教学设计 青岛版六三制
- 九年级语文下册 第一单元 4海燕教学设计 新人教版
- 初中政治 (道德与法治)人教部编版九年级上册延续文化血脉教案配套
- 2024哈电集团汽轮机公司春季校园招聘笔试参考题库附带答案详解
- 七年级地理下册 7.2《“鱼米之乡”长江三角洲地区》教学设计3 鲁教版五四制
- 辅警入职培训总结
- 对培训机构的认识
- 信息技术泰山版七年级上册 2.3《搜索信息》教学设计
- 初中政治思品人教部编版七年级下册(道德与法治)青春萌动教学设计及反思
- 2024ESC心房颤动管理指南解读-完整版
- 警察执法记录仪使用培训
- DB51T 2943-2022 四川省一体化政务服务平台系统接入规范
- 2024年10月自考00015英语二试卷及答案解释
- 医务人员思政课课件
- 疫苗管理法培训课件
- GB/T 44770-2024智能火电厂技术要求
- 了凡四训培训
- 《塑料材质食品相关产品质量安全风险管控清单》
- 问卷调查法完整版本
- 视觉设计基础
评论
0/150
提交评论