




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
5.3平面向量的数量积与平面向量的应用,知识梳理,考点自诊,1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为,则数量|a|b|cos叫做a与b的数量积(或内积),记作ab,即ab=,规定零向量与任一向量的数量积为0,即0a=0.(2)几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积.,|a|b|cos,知识梳理,考点自诊,x1x2+y1y2,x1x2+y1y2=0,知识梳理,考点自诊,3.平面向量数量积的运算律(1)ab=ba(交换律).(2)ab=(ab)=a(b)(结合律).(3)(a+b)c=ac+bc(分配律).,知识梳理,考点自诊,1.平面向量数量积运算的常用公式:(1)(a+b)(a-b)=a2-b2.(2)(ab)2=a22ab+b2.2.当a与b同向时,ab=|a|b|;当a与b反向时,ab=-|a|b|.3.ab|a|b|.,知识梳理,考点自诊,1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)一个非零向量在另一个非零向量方向上的投影为数量,且有正有负.()(2)若ab0,则a和b的夹角为锐角;若ab0,则a和b的夹角为钝角.()(3)若ab=0,则必有ab.()(4)(ab)c=a(bc).()(5)若ab=ac(a0),则b=c.(),知识梳理,考点自诊,2.(2018全国2,理4)已知向量a,b满足|a|=1,ab=-1,则a(2a-b)=()A.4B.3C.2D.0,B,解析:a(2a-b)=2a2-ab=2-(-1)=3.,3.(2018山西吕梁一模,3)若|a|=1,|b|=2,且(a+b)a,则a与b的夹角为(),C,知识梳理,考点自诊,4.(2017全国1,文13)已知向量a=(-1,2),b=(m,1),若向量a+b与a垂直,则m=.,7,解析:因为a=(-1,2),b=(m,1),所以a+b=(m-1,3).因为a+b与a垂直,所以(a+b)a=0,即-(m-1)+23=0,解得m=7.,2,考点1,考点2,考点3,平面向量数量积的运算,C,考点1,考点2,考点3,考点1,考点2,考点3,思考求向量数量积的运算有几种形式?解题心得1.求两个向量的数量积有三种方法:(1)当已知向量的模和夹角时,利用定义求解,即ab=|a|b|cos(其中是向量a与b的夹角).(2)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则ab=x1x2+y1y2.(3)利用数量积的几何意义.数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos的乘积.2.解决涉及几何图形的向量数量积运算问题时,可利用向量的加减运算或数量积的运算律化简.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.,考点1,考点2,考点3,B,D,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,平面向量的模及应用,B,A,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,思考求向量的模及求向量模的最值有哪些方法?解题心得1.求向量的模的方法:(1)公式法,利用及(ab)2=|a|22ab+|b|2,把向量的模的运算转化为数量积运算;(2)几何法,先利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(或范围)的方法:(1)求函数最值法,把所求向量的模表示成某个变量的函数再求最值(或范围);(2)数形结合法,弄清所求的模表示的几何意义,结合动点表示的图形求解.,考点1,考点2,考点3,对点训练2(1)(2018福建龙岩4月模拟,14)已知向量a与b的夹角为60,且|a|=1,|2a-b|=,则|b|=.(2)(2018江西南昌三模,15)已知m,n是两个非零向量,且|m|=1,|m+2n|=3,则|m+n|+|n|的最大值为.,4,考点1,考点2,考点3,考点1,考点2,考点3,平面向量数量积的应用(多考向)考向1求平面向量的夹角例3(1)设向量,b=(x,-3),且ab,则向量a-b与a的夹角为()A.30B.60C.120D.150(2)(2018湖南长郡中学五模,14)已知a=(1,2),a-4b=(-15,-6),则a与b的夹角的余弦值为.思考两向量数量积的正负与两向量的夹角有怎样的关系?,B,考点1,考点2,考点3,考点1,考点2,考点3,考向2平面向量a在b上的投影,(2)(2018江西南昌三模,15)已知向量m=(1,2),n=(2,3),则m在m-n方向上的投影为.思考求一向量在另一向量上的投影一般有哪些方法?,D,考点1,考点2,考点3,考点1,考点2,考点3,考向3在三角形中的应用,A,考点1,考点2,考点3,考向4在解析几何中的应用,5,考点1,考点2,考点3,思考在向量与解析几何相结合的题目中,向量起到怎样的作用?解题心得1.数量积大于0说明不共线的两个向量的夹角为锐角;数量积等于0说明不共线的两个向量的夹角为直角;数量积小于0说明不共线的两个向量的夹角为钝角.2.若a,b为非零向量,(夹角公式),则abab=0.3.求一向量在另一向量上的投影有两种方法:一是利用向量投影的概念求,二是利用向量的数量积求.4.解决与向量有关的三角函数问题的一般思路是应用转化与化归的数学思想,即通过向量的相关运算把问题转化为三角函数问题.,考点1,考点2,考点3,5.向量在解析几何中的作用(1)载体作用:解决向量在解析几何中的问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用数量积与共线定理可解决垂直、平行问题.特别地,向量垂直、平行的坐标表示对于解决解析几何中的垂直、平行问题是一种比较可行的方法.,考点1,考点2,考点3,1,A,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,1.平面向量的坐标表示与向量表示的比较:已知a=(x1,y1),b=(x2,y2),是向量a与b的夹角.,考点1,考点2,考点3,2.计算数量积的三种方法:定义、坐标运算、数量积的几何意义,要灵活选用,与图形有关的不要忽略数量积几何意义的应用.3.利用向量垂直或平行的条件构造方程或函数是求参数或最值问题常用的方法与技巧.,考点1,考点2,考点3,考点1,考点2,考点3,思想方法函数思想与数形结合思想在数量积中的应用,答案:2,解析:因为b0,所以b=xe1+ye2,x0或y0.,反思提升求向量的夹角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级生物下册 第四单元 生物圈中的人 第八章 人是生殖和发育 第二节 人的生长发育和青春期教学设计(4)(新版)苏教版
- 七年级道德与法治下册 第三单元 在集体中成长 第六课“我”和“我们”第2框《集体生活成就我》教学设计 新人教版
- 人教版 (2019)必修 第二册Unit 3 The internet教案及反思
- 人教版八年级下册第十一章 功和机械能11.2 功率教案配套
- 剪纸魔法(教学设计)皖教版三年级上册综合实践活动
- 人教版 (新课标)八年级上册第一节 自然资源的基本特征教学设计
- 七年级地理下册 9.3 撒哈拉以南的非洲-黑种人的故乡教学设计 晋教版
- 九年级化学上册 第六单元 课题3 二氧化碳和一氧化碳教学设计 (新版)新人教版
- 一年级道德与法治上册 2 老师您好教学设计 新人教版
- 七年级生物下册 第二单元 第五章 第一节 激素与生长发育教学设计 (新版)冀教版
- 期中(试题)-2024-2025学年人教精通版(2024)英语三年级下册
- 2025-2030中国煤焦油杂酚油行业市场发展趋势与前景展望战略研究报告
- 新版食品安全法培训课件
- 2025年高考物理专项复习:电磁感应综合题
- 第13课 亚非拉民族独立运动 课件(共26张)2024-2025学年统编版高中历史(必修)中外历史纲要(下)
- 2020-2025年中国辽宁省风力发电行业发展潜力分析及投资方向研究报告
- 安全车辆测试题及答案
- (二模)咸阳市2025年高考模拟检测(二)语文试卷(含答案)
- 东湖高新区2023-2024学年下学期期中七年级数学试题(含答案)
- 劳务派遣劳务外包项目方案投标文件(技术方案)
- 定额〔2025〕1号文-关于发布2018版电力建设工程概预算定额2024年度价格水平调整的通知
评论
0/150
提交评论