




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲 坐标系,平面直角坐标系,复习平面直角坐标系基本结论:,1、两点间的距离公式:,2、中点坐标公式,3、点到直线距离公式,4、直线、圆、椭圆、双曲线、抛物线的定义与方程,声响定位问题,某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s,已知各观测点到中心的距离都是1020m,试确定该巨响的位置。(假定当时声音传播的速度为340m/s,各相关点均在同一平面上).,以接报中心为原点O,以BA方向为x轴,建立直角坐标系.设A、B、C分别是西、东、北观测点,,则 A(1020, 0), B(1020, 0), C(0, 1020),设P(x, y)为巨响为生点,,因A点比B点晚4s听到爆炸声,,故|PA| |PB|=3404=1360,由B、C同时听到巨响声,得|PC|=|PB|, 故P在BC的垂直平分线PO上,,PO的方程为y=x,,由双曲线定义P点在以A, B为焦点的双曲线 上,a=680, c=1020,b2=c2-a2=10202-6802=53402.,所以双曲线的方程为:,用y=x代入上式,得,答:巨响发生在信息中心的西偏北450, 距中心,例1.已知ABC的三边a, b, c满足b2+c2=5a2,BE,CF分别为边AC, CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。,解:以ABC的顶点为原点,边AB所在的直线x轴,建立直角坐标系,由已知,点A、B、F的坐标分别为,所以2x2+2y2+2c2-5cx=0.,由b2+c2=5a2,|AC|2+|AB|2=5|BC|2,,即x2+y2+c2=5(x-c)2+y2,,因为,所以,因此,BE与CF互相垂直.,例1.已知ABC的三边a, b, c满足b2+c2=5a2,BE,CF分别为边AC, CF上的中线,建立适当的平面直角坐标系探究BE与CF的位置关系。,还可怎么建立直角坐标系?,A,B,C,F,E,分析:以AB所在直线为x轴,AB边上的高 所在直线为y轴建立直角坐标系,设A(m, 0), B(n, 0), C(0,p),求出CF、BE的斜率即可,坐 标 法,(3)使图形上的特殊点尽可能多的在坐标轴上。,建系时,根据几何特点选择适当的直角坐标系,注意以下原则:,(1)如果图形有对称中心,可以选对称中心为坐标原点;,(2)如果图形有对称轴,可以选择对称轴为坐标轴;,M,N,P,例2 圆O1与圆O2的半径都是1,|O1O2|=4,过动点P分别作圆O1、圆O2的切线PM、PN (M、N分别为切点),使得PM= PN,试建立适当的坐标系,求动点P的轨迹方程。,解:以直线O1O2为x轴,线段O1O2的垂直平分线为y轴,建立平面直角坐标系,,则两圆的圆心坐标分别为O1(-2, 0),O2(2, 0),设P(x, y),则PM2=PO12-MO12=,同理,PN2=,O1,O2,练习:CA、CO为半径为1的圆C上互相垂直的两条半径,A、O为定点,P是以O为端点的动弦的中点, 求A、P间的最短距离,P,分析:以O为原点,OC所在直线为x轴 建立坐标系,D,小结:求轨迹方程的常用方法,1、直接法,2、定义法,3、相关点法,4、参数法,平面直角坐标系 中的伸缩变换,思考:,怎样由正弦曲线y=sinx得到曲线y=sin2x?,上述变换实质上就是一个坐标的压缩变换,即:设P(x,y)是平面直角坐标系中任意一点,,我们把式叫做平面直角坐标系中的一个坐标压缩变换。,怎样由正弦曲线y=sinx得到曲线y=3sinx?,在正弦曲线上任取一点P(x, y),保持横坐标x不变,将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。,上述变换实质上就是一个坐标的伸长变换,即:设P(x,y)是平面直角坐标系中任意一点,,设P(x, y)是平面直角坐标系中任意一点,保持横坐标x不变,将纵坐标y伸长为原来的3倍,得到点P (x ,y )坐标对应关系为:,我们把式叫做平面直角坐标系中的一个坐标伸长变换.,在正弦曲线y=sinx上任取一点P(x, y),保持纵坐标不变,将横坐标x缩为原来的1/2;,怎样由正弦曲线y=sinx得到曲线y=3sin2x?,在此基础上,将纵坐标变为原来的3倍,就得到正弦曲线y=3sin2x.,即在正弦曲线y=sinx上任取一点P(x,y),若设点P(x,y)经变换得到点为P(x, y),坐标对应关系为:,。,把这样的变换叫做平面直角坐标系中的一个坐标伸缩变换,设P(x, y)是平面直角坐标系中任意一点,在变换:,定义:,称 为平面直角坐标系中的伸缩变换。,上述都是坐标伸缩变换,在它们的作用下,可以实现平面图形的伸缩。,在伸缩变换下,平面直角坐标系不变,在同一直角坐标系下进行伸缩变换。,把图形看成点的运动轨迹,平面图形的伸缩变换可以用坐标伸缩变换得到;,例1 在直角坐标系中,求下列方程所对应的图形经过伸缩变换:,后的图形。,(1) 2x+3y=0;,(2) x2+y2=1,代入 2x+3y=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 能源管理手册培训
- 一年级上册(2024)1 学科学教学设计
- 新疆精河县八年级地理下册 9.1 自然特征与农业教学设计 (新版)新人教版
- 健身教练学员培训
- 书声科技入职培训
- 仓储租赁合同2025年
- 租赁设备合同补充条款范本
- 小学教科版 (2017)5.做一个指南针教案配套
- 美容养生模板培训
- 小学数学沪教版 (五四制)二年级下册二、千以内数的认识与表达位值图上的游戏教学设计及反思
- 外墙保温及涂料施工组织设计方案
- 2025年度学院学术委员会专家聘用合同3篇
- 移植排斥反应早期诊断-洞察分析
- 电力系统继电保护知到智慧树章节测试课后答案2024年秋福建水利电力职业技术学院
- IATF16949基础知识培训教材
- 《基于机器视觉的激光焊缝跟踪系统研究》
- UL1059标准中文版-2020接线端子UL标准中文版
- 酒店服务流程规范化手册
- 消化道疾病护理
- 2024年卫生专业技术资格考试卫生检验技术(初级(师)211)相关专业知识试题及答案指导
- 2024年视角下的地球形状教案创新探讨
评论
0/150
提交评论