




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题2.9 函数模型及其应用1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.知识点一 指数、对数、幂函数模型性质比较函数性质yax(a1)ylogax(a1)yxn(n0)在(0,)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同知识点二 种常见的函数模型函数模型函数解析式一次函数模型f(x)axb(a、b为常数,a0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)与指数函数相关模型f(x)baxc(a,b,c为常数,a0且a1,b0)与对数函数相关模型f(x)blogaxc(a,b,c为常数,a0且a1,b0)与幂函数相关模型f(x)axnb(a,b,n为常数,a0)【特别提醒】1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长速度缓慢.2.充分理解题意,并熟练掌握几种常见函数的图象和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.考点一 利用函数模型解决实际问题【典例1】【2019年高考北京文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元每笔订单顾客网上支付成功后,李明会得到支付款的80%当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付_元;在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为_【答案】130;15【解析】时,顾客一次购买草莓和西瓜各一盒,需要支付元.设顾客一次购买水果的促销前总价为元,当元时,李明得到的金额为,符合要求;当元时,有恒成立,即,因为,所以的最大值为.综上,130;15.【方法技巧】(1)认清所给函数模型,弄清哪些量为待定系数(2)根据已知利用待定系数法,确定模型中的待定系数(3)利用该模型求解实际问题【变式1】(2019河北衡水中学调研)为了降低能源损耗,某体育馆的外墙需要建造隔热层,体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)(0x10,k为常数),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小?并求最小值.【解析】(1)当x0时,C8,k40,C(x)(0x10),f(x)6x6x(0x10).(2)由(1)得f(x)2(3x5)10.令3x5t,t5,35,则y2t1021070(当且仅当2t,即t20时等号成立),此时x5,因此f(x)的最小值为70.隔热层修建5 cm厚时,总费用f(x)达到最小,最小值为70万元.考点二 构建一、二次函数模型解决实际问题【典例2】 (2019山西康杰中学模拟)某企业为打入国际市场,决定从A,B两种产品中只选择一种进行投资生产,已知投资生产这两种产品的有关数据如下表(单位:万美元):项目类别年固定成本每件产品成本每件产品销售价每年最多可生产的件数A产品20m10200B产品40818120其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原料价格决定,预计m6,8,另外,年销售x件B产品时需上交0.05x2万美元的特别关税,假设生产出来的产品都能在当年销售出去(1)写出该厂分别投资生产A,B两种产品的年利润y1,y2与生产相应产品的件数x1,x2之间的函数关系式,并指明定义域;(2)如何投资才可获得最大年利润?请你做出规划【解析】(1)由题意得y110x1(20mx1)(10m)x120(0x1200且x1N),y218x2(408x2)0.05x0.05x10x2400.05(x2100)2460(0x2120且x2N)(2)6m8,10m0,y1(10m)x120为增函数又0x1200,x1N,当x1200时,生产A产品的最大利润为(10m)200201 980200m(万美元)y20.05(x2100)2460(0x2120,且x2N),当x2100时,生产B产品的最大利润为460万美元(y1)max(y2)max(1 980200m)4601 520200m.易知当6m7.6时,(y1)max(y2)max.即当6m7.6时,投资生产A产品200件可获得最大年利润;当m7.6时,投资生产A产品200件或投资生产B产品100件,均可获得最大年利润;当7.6m8时,投资生产B产品100件可获得最大年利润【方法突破】(1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题 【变式2】(2019河北唐山一中模拟)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4x20时,v是x的一次函数,当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.(1)当0x20时,求函数v关于x的函数解析式;(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【解析】(1)由题意得当0x4时,v2,当4x20时,设vaxb(a0),显然vaxb在(4,20内是减函数,由已知得解得所以vx.故函数v(2)设年生长量为f(x)千克/立方米,依题意,由(1)得f(x)当0x4时,f(x)为增函数,故f(x)maxf(4)428;当4x20时,f(x)x2x(x220x)(x10)2,f(x)maxf(10)12.5.所以当0x20时,f(x)的最大值为12.5.故当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.考点三 构建指数函数、对数函数模型解决实际问题【典例3】(2019长春外国语学校模拟)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:)满足函数关系yekxb(e2.718为自然对数的底数,k,b为常数)若该食品在0 的保鲜时间是192小时,在22 的保鲜时间是48小时,则该食品在33 的保鲜时间是()A16小时 B20小时C24小时 D28小时【答案】 C【解析】由已知得192eb,48e22kbe22keb,将代入得e22k,则e11k,当x33时,ye33kbe33keb319224,所以该食品在33 的保鲜时间是24小时故选C.【方法技巧】(1)要先学会合理选择模型,指数函数模型是增长速度越来越快(底数大于1)的一类函数模型,与增长率、银行利率有关的问题都属于指数函数模型(2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函数解析式,再借助函数的图象求解最值问题 【变式3】(2019江苏省丹阳高级中学模拟)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?【解析】(1)设每年砍伐面积的百分比为x(0x1),则a(1x)10a,即(1x)10,解得x1.故每年砍伐面积的百分比为1.(2)设经过m年剩余面积为原来的,则a(1x)ma,把x1代入,即,即,解得m5.故到今年为止,该森林已砍伐了5年.考点四 构建分段函数模型解决实际问题【典例4】(2019西安市第一中学模拟)某景区提供自行车出租,该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后得到的部分)(1)求函数yf(x)的解析式;(2)试问当每辆自行车的日租金为多少元时,才能使一日的净收入最多?【解析】(1)当x6时,y50x115,令50x1150,解得x2.3,x为整数,3x6,xZ.当x6时,y503(x6)x1153x268x115.令3x268x1150,有3x268x1150,结合x为整数得6x20,xZ.f(x)(2)对于y50x115(3x6,xZ),显然当x6时,ymax185;对于y3x268x11532(6x20,xZ),当x11时,ymax270.270185,当每辆自行车的日租金定为11元时,才能使一日的净收入最多【方法突破】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;(2)构造分段函数时,要力求准确、简捷,做到分段合理、不重不漏;(3)分段函数的最值是各段的最大(最小)值的最大(最小)者. 【变式4】(2019昆明第三中学模拟)某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本p(x)万元(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量q(m)(单位:件),已知传统人工分拣每人每日的平均分拣量为1 200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之几?【解析】(1)由总成本p(x)万元,可得每台机器人的平均成本yx1212.当且仅当x,即x300时,上式等号成立若使每台机器人的平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版房地产抵押按揭借款合同
- 出轨协议书二零二五年
- 2025年CBZ-5-苯基-L-半胱氨酸项目合作计划书
- 二零二五父母遗产房屋分配协议书
- 房地产代理合同补充协议
- 二零二五版停薪留职协议员工停薪留职
- 乔木修剪合同样本
- 典当公司担保合同二零二五年
- 二零二五驾校承包经营权合同
- 写字楼物业管理方案
- 外固定架课件
- 结业证书文档模板可编辑
- 《雷锋叔叔你在哪里》教学案例
- DB32-T 2798-2015高性能沥青路面施工技术规范-(高清现行)
- DBS62∕002-2021 食品安全地方标准 黄芪
- 译林版五年级英语下册 Unit 6 第4课时 教学课件PPT小学公开课
- API-620 大型焊接低压储罐设计与建造
- 部编统编版五年级下册道德与法治全册教案教学设计与每课知识点总结
- 浙江省杭州市介绍(课堂PPT)
- 路面及绿化带拆除和修复方案
- 001压力管道安装安全质量监督检验报告
评论
0/150
提交评论