




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2 导数的基本公式与运算法则,2.2.1基本初等函数的导数公式,(x ) = x -1 .,(ax) = ax lna .,(ex) = ex.,(sin x) = cos x.,(cos x) = - sin x.,(tan x) = sec2x .,(cot x) = - csc2x .,(sec x) = sec x tan x .,(csc x) = - csc x cot x .,另外还有反三角函数的导数公式:,例1 求下列函数的导数:,定理2. 1 设函数 u(x)、v(x) 在 x 处可导,,在 x 处也可导,,(u(x) v(x) = u(x) v (x);,(u(x)v(x) = u(x)v(x) + u(x)v(x);,2.2.2导数的四则运算,且,则它们的和、差、积与商,推论 1 (cu(x) = cu(x) (c 为常数).,推论 2,乘法法则的推广:,补充例题: 求下列函数的导数:,解 根据推论 1 可得 (3x4) = 3(x4),,(5cos x) = 5(cos x),,(cos x) = - sin x,,(ex) = ex,,(1) = 0,,故,f (x) = (3x4 - ex + 5cos x - 1) ,= (3x4) -(ex ) + (5cos x) - (1),= 12x3 - ex - 5sin x .,f (0) = (12x3 - ex - 5sin x)|x=0 = - 1,又(x4) = 4x3,,例 1 设 f (x) = 3x4 ex + 5cos x - 1,求 f (x) 及 f (0).,例 2 设 y = xlnx ,,求 y .,解 根据乘法公式,有,y = (xlnx),= x (lnx) + (x)lnx,解 根据除法公式,有,教材P32 例2 求下列函数的导数:,解:,2.2.3 高阶导数,如果可以对函数 f(x) 的导函数 f (x) 再求导,,所得到的一个新函数,,称为函数 y = f(x) 的二阶导数,,记作 f (x) 或 y 或,如对二阶导数再求导,则称三阶导数,,记作 f (x) 或,四阶或四阶以上导数记为 y(4),y(5), ,y(n),或 ,,而把 f (x) 称为 f (x) 的一阶导数.,例3 求下列函数的二阶导数,解:,二阶以上的导数可利用后面的数学软件来计算,推论 设 y = f (u) , u = (v), v = (x) 均可导,则复合函数 y = f ( (x) 也可导,,以上法则说明:复合函数对自变量的导数等于复合 函数对中间变量的导数乘以中间变量对自变量的导数.,先将要求导的函数分解成基本初等函数,或常数与基本初等函数的和、差、积、商.,任何初等函数的导数都可以按常数和基本初等函数的求导公式和上述复合函数的求导法则求出.,复合函数求导的关键: 正确分解初等函数的复合结构.,求导方法小结:,例5:求下列函数的导数,(1) (2) (3) (4),*2.2.7 二元函数的偏导数的求法,求 对自变量 (或 )的偏导数时,只须将另一自变量 (或 )看作常数,直接利用一元函数求导公式和四则运算法则进行计算.,例1 设函数,求,解:,例2 设函数,解:,类似可得,*2.2.8 二元函数的二阶偏导数,函数 z = f ( x , y ) 的两个偏导数,一般说来仍然是 x , y 的函数,,如果这两个函数关于 x , y 的偏导数也存在,,则称它们的偏导数是 f (x , y)的二阶偏导数.,依照对变量的不同求导次序,,二阶偏导数有四个:(用符号表示如下),其中 及 称为二阶混合偏导数.,类似的,可以定义三阶、四阶、 、n 阶偏导数,,二阶及二阶以上的偏导数称为高阶偏导数,,称为函数 f ( x , y ) 的一阶偏导数.,注:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级化学上册 第1单元《课题1 物质的变化和性质》教学设计 (新版)新人教版
- 五年级信息技术上册 孙悟空变变变教学设计 冀教版
- 上册教案(教案)-2024-2025学年三年级上册劳动浙教版
- 人教部编版九年级下册12 词四首综合与测试教学设计
- 初中主题班会“文明礼仪伴我行”教学设计
- 防性侵安全教育主题
- 五年级品德与社会上册 请你相信我 1教学设计 人教新课标版
- 财务咨询公司业务培训
- 2024中铝智能科技发展有限公司面向社会公开招聘5人(第十五批)笔试参考题库附带答案详解
- 2024中铁大桥局集团武汉置业发展有限公司春季校园招聘笔试参考题库附带答案详解
- 幼儿园 小班健康《汉堡男孩》
- 2023年江西省赣州市寻乌县残联公务员考试《行政职业能力测验》历年真题及详解
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 人教版九年级化学《溶液的形成》课件
- 《4.1 免疫系统的组成和功能》参考课件1
- 2025年广东省东莞市中考数学模拟考试试卷及答案解析
- 新疆维吾尔自治区新2024年中考数学模拟试卷附答案
- 零星工程施工合同2024年
- 16《海上日出》 任务型教学设计
- NB-T47013.3-2015承压设备无损检测第3部分:超声检测
- 大学《军事理论》考试题库及答案解析(10套)
评论
0/150
提交评论