




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,第二节,二、反函数的求导法则,三、复合函数求导法则,四、初等函数的求导问题,一、四则运算求导法则,机动 目录 上页 下页 返回 结束,函数的求导法则,第二章,思路:,( 构造性定义 ),求导法则,其它基本初等函数求导公式,证明中利用了 两个重要极限,初等函数求导问题,本节内容,机动 目录 上页 下页 返回 结束,一、四则运算求导法则,定理1.,的和、,差、,积、,商 (除分母,为 0的点外) 都在点 x 可导,且,下面分三部分加以证明,并同时给出相应的推论和,例题 .,机动 目录 上页 下页 返回 结束,此法则可推广到任意有限项的情形.,证:,设, 则,故结论成立.,机动 目录 上页 下页 返回 结束,例如,(2),证: 设,则有,故结论成立.,推论:,机动 目录 上页 下页 返回 结束,( C为常数 ),例1.,解:,机动 目录 上页 下页 返回 结束,(3),证: 设,则有,故结论成立.,推论:,机动 目录 上页 下页 返回 结束,( C为常数 ),例2. 求证,证:,类似可证:,机动 目录 上页 下页 返回 结束,二、反函数的求导法则,定理2.,y 的某邻域内单调可导,证:,在 x 处给增量,由反函数的单调性知,且由反函数的连续性知,因此,机动 目录 上页 下页 返回 结束,例3. 求反三角函数及指数函数的导数.,解: 1) 设,则,类似可求得,利用, 则,机动 目录 上页 下页 返回 结束,2) 设,则,小结:,机动 目录 上页 下页 返回 结束,在点 x 可导,三、复合函数求导法则,定理3.,在点,可导,复合函数,且,在点 x 可导,证:,在点 u 可导,故,(当 时 ),故有,机动 目录 上页 下页 返回 结束,例如,关键: 搞清复合函数结构, 由外向内逐层求导.,推广:此法则可推广到多个中间变量的情形.,机动 目录 上页 下页 返回 结束,例5. 设,求,解:,思考: 若,存在 , 如何求,的导数?,机动 目录 上页 下页 返回 结束,例6. 设,解:,机动 目录 上页 下页 返回 结束,四、初等函数的求导问题,1. 常数和基本初等函数的导数 (P100-101),机动 目录 上页 下页 返回 结束,2. 有限次四则运算的求导法则,( C为常数 ),3. 复合函数求导法则,4. 初等函数在定义区间内可导,且导数仍为初等函数,机动 目录 上页 下页 返回 结束,例7.,求,解:,例8.,设,解:,求,机动 目录 上页 下页 返回 结束,例9.,求,解:,关键: 搞清复合函数结构 由外向内逐层求导,机动 目录 上页 下页 返回 结束,例10. 设,求,解:,机动 目录 上页 下页 返回 结束,备用题 1. 设,解:,2 . 设,解:,求,机动 目录 上页 下页 返回 结束,22,观察函数,方法:,先在方程两边取对数,对数求导法-,适用范围:,二、对数求导法,然后利用求导方法求出导数.,23,1) 对幂指函数,可用对数求导法求导 :,说明:,注意:,24,例1.,.,解: 两边取对数 , 化为对隐式求导数,两边对 x 求导,求,25,例3,对 x 求导,两边取对数,求,三、相关变化率,为两可导函数,之间有联系,之间也有联系,称为相关变化率,相关变化率问题解法:,找出相关变量的关系式,对 t 求导,得相关变化率之间的一般关系式,问题:利用其中一个变化率求出未知的相关变化率,机动 目录 上页 下页 返回 结束,例7. 一气球从离开观察员500 m 处离地面铅直上升,其速率为,当气球高度为 500 m 时, 观察员,视线的仰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年探索融合共生的美好-可持续旅游洞察与实践白皮书-VISA
- 专题二十生命的思考(教学设计)-2024年七年级上册道德与法治部编版
- 班本课程实施培训
- 高铁机务段检修工培训大纲
- 九年级数学上册 第二章 一元二次方程6 应用一元二次方程第1课时 利用一元二次方程解决几何问题教学设计 (新版)北师大版
- 三年级道德与法治下册 第四单元 我们的根在这里 11 最亲家乡人教学设计 苏教版
- 初中政治 (道德与法治)人教部编版八年级上册我与社会教案
- 人教部编版七年级上册走近老师第一课时教案
- 七年级生物上册 1.2.1探索生命的器教学设计 (新版)苏教版
- 防疫志愿者培训教材
- 正念减压疗法的神经机制及应用研究述评
- 2023年成都市金牛区社区工作者招聘考试真题
- 教师发展营造积极学习环境的策略与方法
- 【原创】23祖先的摇篮(第一课时)
- 值日生表格模板
- 胆源性胰腺炎教学查房记录
- 连锁酒店采购成本控制问题及对策研究-以如家酒店为例
- 全国水利ABC证单选题六
- 管道支架重量计算表-2
- 酒店明住宿清单(水单)
- 2002年食物成分表
评论
0/150
提交评论