


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017高考数学一轮复习 第十七章 坐标系与参数方程 17.1 坐标系与极坐标方程对点训练 理1若以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,则线段y1x(0x1)的极坐标方程为()A,0B,0Ccossin,0Dcossin,0答案A解析由xcos,ysin,y1x可得sin1cos,即,再结合线段y1x(0x1)在极坐标系中的情形,可知.因此线段y1x(0x1)的极坐标方程为,0.2以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位已知直线l的参数方程是(t为参数),圆C的极坐标方程是4cos,则直线l被圆C截得的弦长为()A. B2C. D2答案D解析由消去t得xy40,C:4cos24cos,C:x2y24x,即(x2)2y24,C(2,0),r2.点C到直线l的距离d,所求弦长22.故选D.3.在极坐标系中,点到直线(cossin)6的距离为_答案1解析点的直角坐标为(1,),直线(cossin)6的直角坐标方程为xy60,所以点(1,)到直线的距离d1.4在极坐标系中,圆8sin上的点到直线(R)距离的最大值是_答案6解析圆8sin即28sin,化为直角坐标方程为x2(y4)216,直线,则tan,化为直角坐标方程为xy0,圆心(0,4)到直线的距离为2,所以圆上的点到直线距离的最大值为246.5已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2cos24,则直线l与曲线C的交点的极坐标为_答案(2,)解析直线l的普通方程为yx2,曲线C的直角坐标方程为x2y24(x2),故直线l与曲线C的交点为(2,0),对应极坐标为(2,)6在平面直角坐标系中,倾斜角为的直线l与曲线C:(为参数)交于A,B两点,且|AB|2.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,则直线l的极坐标方程是_答案(cossin)1解析曲线C的普通方程为(x2)2(y1)21,设直线l的方程为yxb,弦长|AB|2,圆心(2,1)到直线l的距离d0,圆心在直线l上,l:yx1,令xcos,ysin,直线l的极坐标方程为(cossin)1.7在以O为极点的极坐标系中,圆4sin和直线sina相交于A,B两点,若AOB是等边三角形,则a的值为_答案3解析由4sin可得24sin,所以x2y24y.所以圆的直角坐标方程为x2y24y,其圆心为C(0,2),半径r2;由sina,得直线的直角坐标方程为ya,由于AOB是等边三角形,所以圆心C是等边三角形OAB的中心,若设AB的中点为D(如图)则CDCBsin3021,即a21,所以a3.8.在直角坐标系xOy中,直线C1:x2,圆C2:(x1)2(y2)21,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为(R),设C2与C3的交点为M,N,求C2MN的面积解(1)因为xcos,ysin,所以C1的极坐标方程为cos2,C2的极坐标方程为22cos4sin40.(2)将代入22cos4sin40,得2340,解得12,2.故12,即|MN|.由于C2的半径为1,所以C2MN的面积为.9已知圆C的极坐标方程为22sin40,求圆C的半径解以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郴州布袋风管施工方案
- 水上光电施工方案
- 郑州汽车工程职业学院《绿色建筑设计原理》2023-2024学年第二学期期末试卷
- 商洛日光温室施工方案
- 山西管理职业学院《生物反馈与行为矫正技术》2023-2024学年第二学期期末试卷
- 铝合金护栏的施工方案
- 宁波财经学院《篮球B》2023-2024学年第二学期期末试卷
- 柳州职业技术学院《新媒体项目管理》2023-2024学年第一学期期末试卷
- 景德镇艺术职业大学《汽轮机原理及设备》2023-2024学年第一学期期末试卷
- 内蒙古北方职业技术学院《智能制造技术》2023-2024学年第二学期期末试卷
- 2025-2030中国神经外科手术导航软件行业市场发展趋势与前景展望战略研究报告
- 【杭州】2024年浙江杭州市萧山区第四次机关事业单位公开招聘编外人员51人笔试历年典型考题及考点剖析附带答案详解
- 长沙2025年湖南长沙县招聘机关事业单位工作人员26人笔试历年参考题库附带答案详解
- 2025年第三届天扬杯建筑业财税知识竞赛题库附答案(1301-1400题)
- 学院专业实验室的开放共享模式
- 2025年工地监护员考试题及答案
- 个人住宅装修改造合同
- 2025年台球裁判能力测试题及答案
- 《童年的水墨画》公开课一等奖创新教学设计
- T-CSGPC 033-2024 陆上风电场设施变形测量技术规程
- 2025建筑信息模型技术员(中级)技能鉴定精练考试指导题库及答案(浓缩300题)
评论
0/150
提交评论