异质教育资源对住宅价格的影响研究.docx_第1页
异质教育资源对住宅价格的影响研究.docx_第2页
异质教育资源对住宅价格的影响研究.docx_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

异质教育资源对住宅价格的影响研究 【摘要】 本文以成都市房地产为例,采用多元回归分析法,研究了不同优质程度以及不同阶段教育资源对住宅价格的影响差异,得出了以下结论:第一,无论是针对总样本,还是单独针对幼儿园、中学和大学,优质教育资源和普通教育资源对其周围1000米以内的住房价格的影响并无显著差异;第二,不同阶段的教育资源对其周围住房价格的影响有显著差异。其中,小学对房价的带动作用最高,中学和幼儿园与其相比显著较低,大学与其无显著差异。 【关键词】 异质教育资源;住宅价格;优质教育资源;不同阶段的教育资源 学区房有狭义和广义之分,狭义的学区房是指能按照“就近免试入学”原则就读于特定区域内重点中小学的房屋;广义的学区房则指毗邻教育资源,能满足人们教育学习生活需求的房屋,这些教育资源涵盖不同优质程度,以及不同阶段的学校,包括幼儿园、小学、中学以及大学(江坚,2010)。随着近年来房地产市场的快速发展以及社会对教育公平的要求不断提高,学区房因其稀缺性,不仅成为投资者的重要选择对象,也引起了学术界的广泛关注。 国内已有研究以定性分析为主,只有极少数文献对学区房相关问题进行了定量研究,如文嘉琪(2011)利用搜房网的数据,对上海市长宁区的学区房价格走势进行了简单的统计分析;王曦等(2010)以南京市鼓楼区的13个学区房以及13个非学区房项目为分析样本,运用因子分析法对学区房的价格形成机制进行了实证研究。而关于异质教育资源对学区房价格的影响,尚无文献进行分析。本文从广义学区房的角度出发,以成都市为例,从不同优质程度以及不同阶段两个维度,研究异质教育资源对学区房价格的影响。本文的研究在填补国内相关领域研究空白的同时,可以为学区房的投资者如何投资,以及房地产开发商如何进行教育地产开发提供建议。 一、实证设计 (一)样本来源 本文结合成都市学校的区位分布以及是否优质,分别在不同区域选取了数个幼儿园、小学、中学和大学作为中心点。其中,幼儿园、小学与中学的优质与否是根据其是否为重点学校和示范学校作为判断依据,大学是否优质是根据其是否为一本院校作为判断依据。本文抽取了优质和普通幼儿园、小学、中学各10所,优质和普通大学各4所,并围绕所选学校,采集其1000米以内的楼盘信息作为样本数据。剔除信息不完全的个体,共获取162个楼盘的信息。 表1展示了样本楼盘的区域分布与均价。从该表中可知,本文所抽样的五城区中,学区房价格有较大的差异,其中以锦江区最高、成华区最低。而随着城市的外延,学区房价格也在不断下降。以上数据都说明,区域性以及与城市中心的距离都对学区房价格有重要影响。 表2展示了异质教育资源周围学区房的价格差异。从表2的Panel A可以看出,无论是针对哪个阶段的教育资源,优质资源周围的学区房价格始终高于普通资源。在不同的阶段,大学和小学周围的学区房价格较高,幼儿园和中学周围较低。Panel B展示了不同阶段教育资源的学区房价格差异,发现只有中学和小学周围的学区房价格在10%的水平下有?著差异。 本文还研究了楼盘与教育资源的距离对其价格的影响。首先,本文按照距离从低到高对样本进行排序,将其等分为十组,第1组的距离最短,并计算各组内优质和普通资源旁学区房的价格,结果如表3所示。可以发现,随着楼盘与教育资源的距离不断增加,房价并未呈现出明显递减的趋势。 由于统计分析并未控制其他变量在其中的作用,本文将通过进一步的实证分析,来精确测量异质教育资源对学区房价格的影响。 (二)变量选择及模型设计 本文的目的是要研究异质教育资源对学区房价格的影响,对相关因变量和自变量的描述如下。 1.因变量和自变量 (1)学区房价格。由于本文是以学区房附近的楼盘作为研究对象,因此以搜房网上楼盘的即时均价作为学区房价格的衡量指标,对其取对数,记为HP。 (2)异质教育资源。一是优质和普通之分,用虚拟变量HQ代表,当楼盘最邻优质资源时取1,否则取0;二是不同阶段的教育资源之分,由于有四个阶段,因此用三个虚拟变量GA,MS,UN代表,当教育资源分别为幼儿园、中学和大学时取1,否则取0。 2.控制变量 为了准确检验异质教育资源对学区房价格的影响,本文将尽量排除其他因素在其中的作用。因此,将引入一系列的控制变量(Rosen,1974;温海珍,2005)。 (1)区位因素。一是楼盘与天府广场的距离,对其取对数,记为D1;三是楼盘所处的区域,由于本文的样本来自于青羊、武侯、成华、金牛和锦江区,用四个虚拟变量来衡量,L1、L2、L3和L4,当楼盘分别属于青羊、武侯、成华、金牛区时取1,否则取0。 (2)邻里因素。如果楼盘1000米以内有商场、公交车站、银行、医院以及其他教育资源,则每样记一分,得分范围为0-5分,该变量记为SF。 (3)楼盘因素。楼盘年龄,从楼盘开盘时间起算,记为YEAR;楼盘建筑面积和规划户数,分别对其取对数,并记为AREA和NUM;楼盘的容积率和绿化率,分别记为PR和GR;楼盘类型,用变量TYPE代表,当楼盘属于普通住宅、商业住宅,分别取1和2;装修情况,记为FIT,当楼盘属于毛坯、简装和精装时,分别取1、2、3。 由于自变量众多,本文首先对其相互之间的相关性进行检验,发现变量PR,即容积率,与多个变量存在显著相关性。如其与D1之间的相关系数高达-0.503,并在1%的水平下显著。因此,为了避免多重共线性,将其从控制变量中剔除。 本文将通过以下三个模型来检验异质教育资源对学区房价格的影响。 模型(1)是为了检验优质教育资源与普通教育资源对学区房价格的影响是否不同。如果回归系数显著异于0,说明二者差异明显。如果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论