已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程的解法例析【要点综述】: 一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是学生今后学习数学的基础。根据定义可知,只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程,一般式为:。一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程。整式方程的概念:方程里所有的未知数都出现在分子上,分母只是常数而没有未知数。因此判断一个方程是否为一元二次方程,要先看它是否为整式方程,若是,再对它进行整理,如能整理为的形式,那么这个方程就是一元二次方程。下面再讲一元二次方程的解法。解一元二次方程的基本思想方法是通过“降次”,将它化为两个一元一次方程。一元二次方程的基本解法有四种:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。如下表:方法适合方程类型注意事项直接开平方法0时有解,0时无解。配方法二次项系数若不为1,必须先把系数化为1,再进行配方。公式法0时,方程有解;0时,方程无解。先化为一般形式再用公式。因式分解法方程的一边为0,另一边分解成两个一次因式的积。方程的一边必须是0,另一边可用任何方法分解因式。【举例解析】 例1 :用开平方法解下面的一元二次方程。 (1); (2) 分析:直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如的方程,其解为。通过观察不难发现第(1)、(2)两小题中的方程显然用直接开平方法好做; 解:(1)(注意不要丢解) 由得, 由得, 原方程的解为:,(2) 由得,由得 原方程的解为:, 说明:解一元二次方程时,通常先把方程化为一般式,但如果不要求化为一般式,像本题要求用开平方法直接求解,就不必化成一般式。用开平方法直接求解,应注意方程两边同时开方时,只需在一边取正负号,还应注意不要丢解。 例3 :用配方法解下列一元二次方程。 (1);(2) 分析:用配方法解方程,应先将常数移到方程右边,再将二次项系数化为1,变为的形式。第(1)题可变为,然后在方程两边同时加上一次项系数的一半的平方,即:,方程左边构成一个完全平方式,右边是一个不小于0的常数,即:,接下去即可利用直接开平方法解答了。第(2)题在配方时应特别注意在方程两边加上一次项系数的一半的平方。 解:(1) 二次项系数化为1,移常数项得:, 配方得:,即 直接开平方得: , 原方程的解为:,(2) (3) 二次项系数化为1,移常数项得:方程两边都加上一次项系数一半的平方得: 即直接开平方得: , 原方程的解为:, 说明:配方是一种基本的变形,解题中虽不常用,但作为一种基本方法要熟练掌握。配方时应按下面的步骤进行:先把二次项系数化为1,并把常数项移到一边;再在方程两边同时加上一次项系数一半的平方。最后变为完全平方式利用直接开平方法即可完成解题任务。 例4:用公式法解下列方程。 (1);(2)分析:用公式法就是指利用求根公式,使用时应先把一元二次方程化成一般形式,然后计算判别式的值,当0时,把各项系数的值代入求根公式即可得到方程的根。但要注意当0时,方程无解。第(1)小题应先移项化为一般式,再计算出判别式的值,判断解的情况之后,方可确定是否可直接代入求根公式;第(2)小题为了避免分数运算的繁琐,可变形为,求出判别式的值后,再确定是否可代入求根公式求解。 解:(1), 化为一般式: 求出判别式的值:0代入求根公式:, , (2) 化为一般式: 求出判别式的值:0 , 说明:公式法可以用于解任何一元二次方程,在找不到简单方法时,即考虑化为一般形式后使用公式法。但在应用时要先明确公式中字母在题中所表示的量,再求出判别式的值,解得的根要进行化简。 例5:用分解因式法解下列方程。 (1);(2) 分析:分解因式法是把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。第(1)题已经是一般式,可直接对左边分解因式;第(2)题必须先化简变为一般式后再进行分解因式。 解:(1) 左边分解成两个因式的积得: 于是可得:, , (2) 化简变为一般式得:左边分解成两个因式的积得: 于是可得:, , 说明:使用分解因式法时,方程的一边一定要化为0,这样才能达到降次的目的。把方程一边化为0,把另一边分解因式的方法可以用于解今后遇到的各类方程。因为这是把方程降次的重要手段之一。 总结:直接开平方法是最基本的方法。公式法和配方法是最重要的方法。公式法适用于任何一元二次方程,在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在使用公式前应先计算出判别式的值,以便判断方程是否有解。配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的重要的数学方法之一。最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般式,同时应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同书责任者最简单三个步骤
- 合同生效日期说明函
- 鲁滨逊人物课件
- 《客服岗位职责》课件
- 《高血压病及其相关》课件
- 小学五年级上册科学课件教科版第3课 心脏和血液
- 零售学第一章 导论
- 小学六年级科学课件教科版第2课 昼夜交替现象
- 四年级上册科学教科版课件第8课 制作我的小乐器
- 《地下水系统》课件
- 2024年全国职业院校技能大赛高职组(生产事故应急救援赛项)考试题库(含答案)
- 移动警务解决方案
- 小学六年级上学期美术《废物新用》教学课件
- 2021-2022学年黑龙江省牡丹江市宁安市九年级(上)期末数学试卷
- 西洋参培训课件
- FURUNO 电子海图 完整题库
- 项目股份买断合同范本
- 2024年云南省昆明市审计局招聘9人历年(高频重点复习提升训练)共500题附带答案详解
- 华东师大版(2024年新教材)七年级上册数学第3章《图形的初步认识》综合素质评价试卷(含答案)
- 跟我学古筝智慧树知到期末考试答案章节答案2024年丽水学院
- 天津市和平区天津益中学校2021-2022学年七年级上学期期末数学试题
评论
0/150
提交评论