2材料物理课件_(14).ppt_第1页
2材料物理课件_(14).ppt_第2页
2材料物理课件_(14).ppt_第3页
2材料物理课件_(14).ppt_第4页
2材料物理课件_(14).ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

nano-devices,1, nano-scale devices 2, molecular devices 3, devices with nano-materials,nanoscale devices,nano-computers,electronic nanocomputers quantum mechanical tunneling effect chemical nanocomputers stores information in the chemical bonds: dna etc. mechanical nanocomputers moving molecular scale parts: how to assemble ? quantum computer each bit of information as a quantum state: spins etc,nanoelectronic devices,solid state nanoelectronic devices,quantum dots “artificial atoms” (qd): 0-d resonant tunneling devices (rtd, rtt): 1- or 2-d single electron transistor (set): 3-d quantum cellular automata (qca) magnetic random access memory (mram),islands confine electrons,microelectronic transistor: structure, operation, obstacles to miniaturization,function of transistor - two state device or switch - amplification,n- and p-type silicon semiconductor,p-type b doped hole carrier n-type p, as doped electron carrier,b,p,depletion region,- + - + - +,+,-,ef,p n,some of the free electrons in the n-region diffuse across the junction and combine with holes to form negative ions. in so doing they leave behind positive ions at the donor impurity sites.,structure and operation of mosfet,i-v charateristics of n-type mosfet,vgate = 5v 4 v 3 v 2 v,obstacles to further scaling of fet,high electric field due to bias voltage to short distance - avalanche break down due to high kinetic energy electrons - tunneling through insulating layers heat dissipation of transistors due to limited thermodynamic efficiency - molecular scaled device: as much heat as gunpowder vanishing bulk properties and nonuniform dopant concentration - few dopant atoms in nano scale: functioning as transistor? - quantum mechanical effect shrinkage of depletion regions(0.1mm) - current leakage shrinkage and uneveness of the thin oxide layer - tunneling,resonant tunneling device (rtd),single electron transistor - island potential is capacitively controlled by the gate. - coulomb blockade is overcome by changing the gate voltage advantage - ultra low power operation - fast,e,source,drain,gate,island,i,v,vg =1v,vg =-1v,single electron transistor,coulomb blockade effect,coulomb blockade effect quantum tunneling of electron between source and drain can be blocked if the charging energy ec = e2/2c kt de = ev ec r1) - current steps at e/2c2 + n(e/c2),e,source,drain,gate,island,n= 2 1 0,n= 2 1,v,i,v,on,off,r1 r2,c1 c2,r2/r1 =1000,r2/r1 =1,example: set at 100k,s.y. chou et al, appl. phys. lett 67, 938 (1995),si dot with 20nm diameter : energy spacing = 40mev current oscillation due to the interference between different modes of quantum waves in a cavity,example: set operating at room temperature,unclear coulomb staircase due to the symmetric size of the tunnel juncton,coulomb staircase with periods of 150mv,single electron memory,e,source,drain,gate,island,storage dot,example: single electron memory,discrete shift in the threshold voltage staircase relation between the charging voltage and the shift self-limiting charging process,nanotube single electron transistor,the amount of current (isd) flowing through the nanotube channel can be varied by a factor of 100,000 by changing the voltage applied to a gate (vg),quantum dot cellular automata,i. amlani et al, science, 284, 289 (1999),wireless interconnection communicate by the electric fields of electrons,nanowire transistor,y. cui and c.m. lieber, science 291, 851 (2001),common base current gain: ic/ie=0.94 common emitter current gain: ic/ib=16,ef,e b c,n p n,veb,vcb,comparison of nanodevices,comparison of nanodevices,drawbacks and obstacles to solid- state nanoelectronic devices,valley current in rtd - not clear on and off sensitivity to input and current fluctuations - accidental on and off cryogenic operation: 30nm si set at 150 k - reducing size: ec and de increase. materials: si is still preferred - sio2 is still best insulator - gaas is far inferior to electric fields background charge problems extreme sensitivity of the tunneling current to width of potential barriers - soi technology or nonpolarizable organic compounds extreme difficulty of making islands and tunnel barriers precisely and uniformly,single molecular devices,molecular electronic devices,chemically assembled configurations rather than artificially drawn structures,voltage pulse yields high conductivity state - data bit stored,bit is read as high in low voltage region,dynamic random access memory,applied perpendicular field favors zwitterionic structure which is planar better pi overlap, better conductivity.,voltage-driven conductivity switch,devices with nanomaterials,light-emitting devices photovoltaic devices memories,light-emitting diodes with nan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论