毕业论文范文——圆形铸造件自动无损探伤检测分拣系统_第1页
毕业论文范文——圆形铸造件自动无损探伤检测分拣系统_第2页
毕业论文范文——圆形铸造件自动无损探伤检测分拣系统_第3页
毕业论文范文——圆形铸造件自动无损探伤检测分拣系统_第4页
毕业论文范文——圆形铸造件自动无损探伤检测分拣系统_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆形铸造件自动无损探伤检测分拣系统摘要PLC是一种专门为在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。本系统主要运用了PLC开关量的逻辑控制。这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。 本系统另外一个重要组成部分就是输出为开关量(“1”和0”或“开”和“关”)的开关型传感器。在这套系统中用到了无接触接近式传感器电涡流式传感器、光电传感器、磁传感器(磁性开关)。分别实现检测工件、系统机械转动装置及汽缸运动是否到位等功能。 结合以上两个的特点,将PLC和传感器结合起来组成了圆柱形铸造件自动无损探伤检测分拣系统,它结合了两者之间的优点,具有控制原理简单、使用方便、控制精度高等特点。本文先讲述了各组成部分的特点及优点。其次具体介绍了本系统的工作方式。最后通过调试达到本系统所应该起到的作用及其效果。关键词 : PLC 逻辑控制 开关型传感器第一章 绪论1.1 PLC系统技术1.1.1 PLC的特点(1)可靠性高,抗干扰能力强高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。例如三菱公司生产的F系列PLC平均无故障时间高达30万小时。一些使用冗余CPU的PLC的平均无故障工作时间则更长。从PLC的机外电路来说,使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我检测功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统具有极高的可靠性也就不奇怪了。(2)配套齐全,功能完善,适用性强PLC发展到今天,已经形成了大、中、小各种规模的系列化产品。可以用于各种规模的工业控制场合。除了逻辑处理功能以外,现代PLC大多具有完善的数据运算能力,可用于各种数字控制领域。近年来PLC的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。(3)易学易用,深受工程技术人员欢迎PLC作为通用工业控制计算机,是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,只用PLC的少量开关量逻辑控制指令就可以方便地实现继电器电路的功能。为不熟悉电子电路、不懂计算机原理和汇编语言的人使用计算机从事工业控制打开了方便之门。(4)系统的设计、建造工作量小,维护方便,容易改造PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时维护也变得容易起来。更重要的是使同一设备经过改变程序改变生产过程成为可能。这很适合多品种、小批量的生产场合。(5)体积小,重量轻,能耗低以超小型PLC为例,新近出产的品种底部尺寸小于100mm,重量小于150g,功耗仅数瓦。由于体积小很容易装入机械内部,是实现机电一体化的理想控制设备。1.1.2 PLC的应用领域目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可归纳为如下几类。(1)开关量的逻辑控制这是PLC最基本、最广泛的应用领域,它取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机群控及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。(2)模拟量控制在工业生产过程当中,有许多连续变化的量,如温度、压力、流量、液位和速度等都是模拟量。为了使可编程控制器处理模拟量,必须实现模拟量(Analog)和数字量(Digital)之间的A/D转换及D/A转换。PLC厂家都生产配套的A/D和D/A转换模块,使可编程控制器用于模拟量控制。(3)运动控制PLC可以用于圆周运动或直线运动的控制。从控制机构配置来说,早期直接用于开关量I/O模块连接位置传感器和执行机构,现在一般使用专用的运动控制模块。如可驱动步进电机或伺服电机的单轴或多轴位置控制模块。世界上各主要PLC厂家的产品几乎都有运动控制功能,广泛用于各种机械、机床、机器人、电梯等场合。(4)过程控制过程控制是指对温度、压力、流量等模拟量的闭环控制。作为工业控制计算机,PLC能编制各种各样的控制算法程序,完成闭环控制。PID调节是一般闭环控制系统中用得较多的调节方法。大中型PLC都有PID模块,目前许多小型PLC也具有此功能模块。PID处理一般是运行专用的PID子程序。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。(5)数据处理现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。这些数据可以与存储在存储器中的参考值比较,完成一定的控制操作,也可以利用通信功能传送到别的智能装置,或将它们打印制表。数据处理一般用于大型控制系统,如无人控制的柔性制造系统;也可用于过程控制系统,如造纸、冶金、食品工业中的一些大型控制系统。(6)通信及联网PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着计算机控制的发展,工厂自动化网络发展得很快,各PLC厂商都十分重视PLC的通信功能,纷纷推出各自的网络系统。新近生产的PLC都具有通信接口,通信非常方便。1.1.3 PLC未来展望21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成果会更多地应用于可编程控制器的设计和制造上,会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进一步向超小型及超大型方向发展;从产品的配套性上看,产品的品种会更丰富、规格更齐全,完美的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求;从市场上看,各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际市场的局面,会出现国际通用的编程语言;从网络的发展情况来看,可编程控制器和其它工业控制计算机组网构成大型的控制系统是可编程控制器技术的发展方向。目前的计算机集散控制系统DCS(Distributed Control System)中已有大量的可编程控制器应用。伴随着计算机网络的发展,可编程控制器作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。1.1.4 PLC基础知识(1) PLC的发展历程在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。传统上,这些功能是通过气动或电气控制系统来实现的。1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字公司研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable Controller(PC)。个人计算机(简称PC)发展起来后,为了方便,也为了反映可编程控制器的功能特点,可编程序控制器定名为Programmable Logic Controller(PLC)。上世纪80年代至90年代中期,是PLC发展最快的时期,年增长率一直保持为3040%。在这时期,PLC在处理模拟量能力、数字运算能力、人机接口能力和网络能力得到大幅度提高,PLC逐渐进入过程控制领域,在某些应用上取代了在过程控制领域处于统治地位的DCS系统。PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。(2) PLC的构成从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。(3) CPU的构成CPU是PLC的核心,起神经中枢的作用,每套PLC至少有一个CPU,它按PLC的系统程序赋予的功能接收并存贮用户程序和数据,用扫描的方式采集由现场输入装置送来的状态或数据,并存入规定的寄存器中,同时,诊断电源和PLC内部电路的工作状态和编程过程中的语法错误等。进入运行后,从用户程序存贮器中逐条读取指令,经分析后再按指令规定的任务产生相应的控制信号,去指挥有关的控制电路。CPU主要由运算器、控制器、寄存器及实现它们之间联系的数据、控制及状态总线构成,CPU单元还包括外围芯片、总线接口及有关电路。内存主要用于存储程序及数据,是PLC不可缺少的组成单元。在使用者看来,不必要详细分析CPU的内部电路,但对各部分的工作机制还是应有足够的理解。CPU的控制器控制CPU工作,由它读取指令、解释指令及执行指令。但工作节奏由震荡信号控制。运算器用于进行数字或逻辑运算,在控制器指挥下工作。寄存器参与运算,并存储运算的中间结果,它也是在控制器指挥下工作。CPU速度和内存容量是PLC的重要参数,它们决定着PLC的工作速度,IO数量及软件容量等,因此限制着控制规模。(4) I/O模块PLC与电气回路的接口,是通过输入输出部分(I/O)完成的。I/O模块集成了PLC的I/O电路,其输入暂存器反映输入信号状态,输出点反映输出锁存器状态。输入模块将电信号变换成数字信号进入PLC系统,输出模块相反。I/O分为开关量输入(DI),开关量输出(DO),模拟量输入(AI),模拟量输出(AO)等模块。常用的I/O分类如下:开关量:按电压水平分,有220VAC、110VAC、24VDC,按隔离方式分,有继电器隔离和晶体管隔离。模拟量:按信号类型分,有电流型(4-20mA,0-20mA)、电压型(0-10V,0-5V,-10-10V)等,按精度分,有12bit,14bit,16bit等。除了上述通用IO外,还有特殊IO模块,如热电阻、热电偶、脉冲等模块。按I/O点数确定模块规格及数量,I/O模块可多可少,但其最大数受CPU所能管理的基本配置的能力,即受最大的底板或机架槽数限制。(5) 电源模块PLC电源用于为PLC各模块的集成电路提供工作电源。同时,有的还为输入电路提供24V的工作电源。电源输入类型有:交流电源(220VAC或110VAC),直流电源(常用的为24VDC)。(6) 底板或机架大多数模块式PLC使用底板或机架,其作用是:电气上,实现各模块间的联系,使CPU能访问底板上的所有模块,机械上,实现各模块间的连接,使各模块构成一个整体。(7) PLC系统的其它设备1) 编程设备:编程器是PLC开发应用、监测运行、检查维护不可缺少的器件,用于编程、对系统作一些设定、监控PLC及PLC所控制的系统的工作状况,但它不直接参与现场控制运行。小编程器PLC一般有手持型编程器,目前一般由计算机(运行编程软件)充当编程器。也就是我们系统的上位机。2) 人机界面:最简单的人机界面是指示灯和按钮,目前液晶屏(或触摸屏)式的一体式操作员终端应用越来越广泛,由计算机(运行组态软件)充当人机界面非常普及。(8) PLC的通信联网依靠先进的工业网络技术可以迅速有效地收集、传送生产和管理数据。因此,网络在自动化系统集成工程中的重要性越来越显著,甚至有人提出网络就是控制器的观点说法。PLC具有通信联网的功能,它使PLC与PLC 之间、PLC与上位计算机以及其他智能设备之间能够交换信息,形成一个统一的整体,实现分散集中控制。多数PLC具有RS-232接口,还有一些内置有支持各自通信协议的接口。PLC的通信现在主要采用通过多点接口(MPI)的数据通讯、PROFIBUS或工业以太网进行联网。1.1.5 PLC控制系统的设计基本原则(1) 最大限度的满足被控对象的控制要求。(2) 在满足控制要求的前提下,力求使控制系统简单、经济、使用和维护方便。(3) 保证控制系统安全可靠。(4) 考虑到生产的发展和工艺的改进在选择PLC容量时应适当留有余量。1.1.6 PLC软件系统及常用编程语言(1) PLC软件系统由系统程序和用户程序两部分组成。系统程序包括监控程序、编译程序、诊断程序等,主要用于管理全机、将程序语言翻译成机器语言,诊断机器故障。系统软件由PLC厂家提供并已固化在EPROM中,不能直接存取和干预。用户程序是用户根据现场控制要求,用PLC的程序语言编制的应用程序(也就是逻辑控制)用来实现各种控制。STEP7是用于SIMATIC可编程逻辑控制器组态和编程的标准软件包,也就是用户程序,我们就是使用STEP7来进行硬件组态和逻辑程序编制,以及逻辑程序执行结果的在线监视。(2) PLC提供的编程语言1) 标准语言梯形图语言也是我们最常用的一种语言,它有以下特点: 它是一种图形语言,沿用传统控制图中的继电器触点、线圈、串联等术语和一些图形符号构成,左右的竖线称为左右母线。 梯形图中接点(触点)只有常开和常闭,接点可以是PLC输入点接的开关也可以是PLC内部继电器的接点或内部寄存器、计数器等的状态。 梯形图中的接点可以任意串、并联,但线圈只能并联不能串联。 内部继电器、计数器、寄存器等均不能直接控制外部负载,只能做中间结果供CPU内部使用。 PLC是按循环扫描事件,沿梯形图先后顺序执行,在同一扫描周期中的结果留在输出状态暂存器中所以输出点的值在用户程序中可以当做条件使用。2) 语句表语言,类似于汇编语言。3) 逻辑功能图语言,沿用半导体逻辑框图来表达,一般一个运算框表示一个功能左边画输入、右边画输出。1.1.7 STEP7程序的使用(1) 创建一个项目结构,项目就象一个文件夹,所有数据都以分层的结构存在于其中,任何时候你都可以使用。在创建一个项目之后,所有其他任务都在这个项目下执行。(2) 组态一个站,组态一个站就是指定你要使用的可编程控制器,例如S7300、S7400等。(3) 组态硬件,组态硬件就是在组态表中指定你的控制方案所要使用的模板以及在用户程序中以什么样的地址来访问这些模板,地址一般不用修改由程序自动生成。模板的特性也可以用参数进行赋值。(4) 组态网络和通讯连接,通讯的基础是预先组态网络,也就是要创建一个满足你的控制方案的子网,设置网络特性、设置网络连接特性以及任何联网的站所需要的连接。网络地址也是程序自动生成如果没有更改经验一定不要修改。(5) 定义符号,可以在符号表中定义局部或共享符号,在你的用户程序中用这些更具描述性的符号名替代绝对地址。符号的命名一般用字母编写不超过8个字节,最好不要使用很长的汉字进行描述,否则对程序的执行有很大的影响。(6) 创建程序,用梯形图编程语言创建一个与模板相连结或与模板无关的程序并存储。创建程序是我们控制工程的重要工作之一,一般可以采用线形编程(基于一个块内,OB1)、分布编程(编写功能块FB,OB1组织调用)、结构化编程(编写通用块)。我们最常采用的是结构化编程和分布编程配合使用,很少采用线形编程。(7) 下载程序到可编程控制器,完成所有的组态、参数赋值和编程任务之后,可以下载整个用户程序到可编程控制器。在下载程序时可编程控制器必须在允许下载的工作模式下(STOP或RUN-P), RUN-P模式表示,这个程序将一次下载一个块,如果重写一个旧的CPU程序就可能出现冲突,所以一般在下载前将CPU切换到STOP模式。1.1.8 WINCC程序的使用(1) 简介,WINCC是在生产和过程自动化中解决可视化和控制任务的工业技术中性系统。具有控制自动化过程的强大功能,是基于个人计算机的操作监视系统,它很容易结合标准的和用户的程序建立人机界面精确的满足生产实际要求。WINCC有两个版本RC版(具有组态和开发环境)、RT版(只有运行环境),我们一般使用的是RC版。(2) WINCC简单使用步骤1) 变量管理,首先确定通讯方式安装驱动程序,然后定义内部变量和外部变量,外部变量是受你买的WINCC软件授权限制的最大授权64K字节,内部变量没有限制。2) 画面生成,进入图形编辑器,图形编辑器是一种用于创建过程画面的面向矢量的作图程序。也可以使用包含在对象和样式库中的众多的图形对象来创建复杂的过程画面。可以通过动作编程将动态添加到单个图形对象上。3) 报警记录设置,报警记录提供了显示和操作选项来获取和归档结果。可以任意地选择消息块、消息级别、消息类型、消息显示以及报表。为了在运行中显示消息,可以使用包含在图形编辑器中的对象库中的报警控件。4) 变量记录,变量记录是用来从运行过程中采集数据并准备将它们显示和归档。5) 报表组态,报表组态是通过报表编辑器来实现的。是为消息、操作、归档内容和当前或已归档的数据定时器或事件控制文档的集成的报表系统,可以自由选择用户报表的形式。6) 全局脚本的应用,全局脚本就是C语言函数和动作的通称,根据不同的类型脚本被用于给对象组态动作并通过系统内部C语言编译器来处理。全局脚本动作用于过程执行的运行中。一个触发可以开始这些动作的执行。7) 用户管理器设置,用户管理器用于分配和控制用户的单个组态和运行系统编辑器的访问权限。每建立一个用户,就设置了WINCC功能的访问权利并独立的分配给此用户。至多可分配999个不同的授权。8) 交叉表索引,交叉索引用于为对象寻找和显示所有使用处,例如变量、画面和函数等。使用“链接”功能可以改变变量名称而不会导致组态不一致。 第二章 传感器2.1 传感器的简介2.1.1传感器的定义国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。2.1.2传感器的分类目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种:(1)按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器(2)按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。(3)按传感器输出信号的性质分类,可分为:输出为开关量(“”和”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。2.1.3传感器的静态特性传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、分辨力和迟滞等。(1)传感器的动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。(2)传感器的线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。(3)传感器的灵敏度灵敏度是指传感器在稳态工作情况下输出量变化y对输入量变化x的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。(4)传感器的分辨力分辨力是指传感器可能感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨力时,其输出才会发生变化。通常传感器在满量程范围内各点的分辨力并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨力的指标。上述指标若用满量程的百分比表示,则称为分辨率。(5)传感器的迟滞特性迟滞特性表征传感器在正向(输入量增大)和反向(输入量减小)行程间输出-一输入特性曲线不一致的程度,通常用这两条曲线之间的最大差值MAX与满量程输出FS的百分比表示。迟滞可由传感器内部元件存在能量的吸收造成(6)电容传感器电容式传感器(接近开关)它的检测面由两个同轴金属电极构成,很象打开的电容器电极,该电极串在RC振荡回路内。当被检测物接近检测物时,电容的容量产生变化,使振荡起振,通过后级整形放大转换成开关信号,从而达到检测有无物体存在的目的(7)磁敏传感器磁敏传感器是一种具有将磁学量信号转换为电信号功能的器件或装置。利用磁学量与其他物理量的变换关系,以磁场作为媒介,也可将其他非电物理量转变为电信号。磁传感器的种类很多,本系统主要使用舌簧传感器和开关型霍尔传感器(8)电涡流式传感器 利用电涡流效应将位移等非电被测参量转换为线圈的电感或阻抗变化的变磁阻式传感器。电涡流效应是指金属导体置于交变磁场中会产生电涡流,且该电涡流所产生磁场的方向与原磁场方向相反的一种物理现象。电涡流传感器的敏感元件是线圈,当给线圈通以交变电流并使它接近金属导体时,线圈产生的磁场就会被导体电涡流产生的磁场部分抵消,使线圈的电感量、阻抗和品质因数发生变化。这种变化与导体的几何尺寸、导电率、导磁率有关,也与线圈的几何参量、电流的频率和线圈到被测导体间的距离有关。如果使上述参量中的某一个变动,其余皆不变,就可制成各种用途的传感器,能对表面为金属导体的物体进行多种物理量的非接触测量。这种传感器的优点是结构简单、频率响应宽、灵敏度高、测量线性范围大、抗干扰能力强、体积小等。它是一种很有发展前途的传感器。电涡流式传感器按用途可分为测量位移、接近度和厚度的传感器;按结构可分为变间隙型、变面积型、螺管型和低频透射型4类。 变间隙型 这种传感器结构很简单,主要元件是一个固定于传感器端部的线圈。当被测导体与线圈之间的间隙发生变化时,就引起线圈电感、阻抗和品质因数变化,从而能在接到线圈上的测量电路内得到正比于间隙变化的电流或电压变化。为改善性能可在线圈内加入磁芯。 变面积型 这种传感器由绕在扁矩形框架上的线圈构成,它利用被测导体和传感器线圈之间相对覆盖面积的变化所引起的电涡流效应强弱的变化来测量位移。为补偿间隙变化引起的误差常使用两个串接的线圈,置于被测物体的两边(图1)。它的线性测量范围比变间隙型的大,而且线性度较高。 螺管型 这种传感器由螺管和插入螺管的短路套筒组成,套筒与被测物体相连。套筒沿轴向移动时,电涡流效应引起螺管阻抗变化。这种传感器有较好的线性度,但是灵敏度较低,具有与螺管型电感式传感器(见电感式传感器)相似的特性,但没有铁损。 低频透射型 它由分别位于被测金属板材两面的发射线圈和接收线圈组成,适于测量金属板材的厚度。发射线圈L1接到振荡器上后所产生的磁力线穿过金属板M,于是在接收线圈 L2两端产生感应电压u2。由于金属板内产生电涡流使到达L2的磁力线减小。金属板的厚度越大,透射的磁力线越少,因而u2也就越小。u2与之间呈指数变化关系:u2e-/h,式中h为磁力线的贯穿深度。贯穿深度取决于激励频率,为使贯穿深度大于板材厚度,要将频率选得低些。频率低还可改善线性度。激励频率一般选在500赫左右。 应用: 电涡流式传感器能实现非接触式测量,而且是根据与被测导体的耦合程度来测量,因此可以通过灵活设计传感器的构形和巧妙安排它与被测导体的布局来达到各种应用的目的。在测量位移方面,除可直接测量金属零件的动态位移、汽轮机主轴的轴向窜动等位移量外,它还可测量如金属材料的热膨胀系数、钢水液位、纱线张力、流体压力、加速度等可变换成位移量的参量。在测量振动方面,它是测量汽轮机、空气压缩机转轴的径向振动和汽轮机叶片振幅的理想器件。还可以用多个传感器并排安置在轴侧,并通过多通道指示仪表输出至记录仪,以测量轴的振动形状并绘出振型图。在测量转速方面,只要在旋转体上加工或加装一个有凹缺口的圆盘状或齿轮状的金属体,并配以电涡流传感器,就能准确地测出转速。此外,利用导体的电阻率与温度的关系,保持线圈与被测导体之间的距离及其他参量不变,就可以测量金属材料的表面温度,还能通过接触气体或液体的金属导体来测量气体或液体的温度。电涡流测温是非接触式测量,适用于测低温到常温的范围,且有不受金属表面污物影响和测量快速等优点。保持传感器与被测导体的距离不变,还可实现电涡流探伤。探测时如果遇到裂纹,导体电阻率和导磁率就发生变化,电涡流损耗,从而输出电压也相应改变。通过对这些信号的检验就可确定裂纹的存在和方位。电涡流传感器还可用作接近度传感器和厚度传感器以及用于金属零件计数、尺寸检验、粗糙度检测和制作非接触连续测量式硬度计。第三章 气压传动3.1.1气压传动工作原理气压传动的工作原理是利用空气压缩机使空气介质产生压力能,并在控制元件的作用下,把气体压力能传输给执行元件,而使执行元件(汽缸或气马达)完成直线运动和旋转运动。(1)气压传动的用途 气压传动的用途是极其广泛的1)用于化工产品的生产过程中。2)用于人不宜到达的地方,如高温和危险的劳动。3)用于高速重复的运动机械中。4)用于食品行业中。5)用于医学领域中。6)用于太空设备中。3.1.2 气压传动系统简介(1)气压传动系统是以压缩空气为工作介质为传递动力和控制信号的系统。气压传动系统由气源装置、辅助元件、控制元件、执行元件四部分组成。1)气动装置 获得压缩空气的装置,如空气压缩机。2)执行元件 将压力能转换成机械能的能量转换装置。3)控制元件 控制气体的压力、流量及方向的元件,如压力阀、流量阀、方向阀、逻辑元件等。4)辅助元件 使压缩空气净化、润滑、消声以及用于元件间的连接的元件或装置。(2)气压传动的特点1)气压传动的工作介质是空气,排放方便,不污染环境。2)空气粘度小,便于远距离输送,能源损失小。3)气压传动反应快,维护简单。4)工作环境适应好,允许工作温度范围宽。5)有过载保护作用。6)空气具有可压缩性,因此工作速度稳定性较差。7)工作压力低,气压传动装置总输出力较小。8)噪声大。9)空气无润滑性能,元件需设置给油润滑装置。3.1.3 气动元件(1)空气压缩机1)空气压缩机的分类空气压缩机是气源装置中的主体,它是将原动机(通常是电动机)的机械能转换成气体压力能的装置,是压缩空气的气压发生装置。空气压缩机的种类很多,按工作原理可分为容积型压缩机和速度型压缩机。容积型压缩机的工作原理是压缩气体的体积,使单位体积内气体分子的密度增加以提高压缩空气的压力;速度型压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。 2)活塞式空气压缩机的工作原理在气压传动中,通常采用容积型活塞式空气压缩机。这里介绍两种典型结构,用来帮助理解空气压缩机的工作原理。立式空气压缩机的气缸中心线与地面垂直,卧式空气压缩机的气缸中心线则与地面平行。原动机(电动机或内燃机)的回转运动经曲柄连杆机构转换为活塞的往复直线运动。空气压缩机中 的进气、排气过程与液压泵的吸油、压油过程类似,这里不再赘述。3)空气压缩机的选择空气压缩机的选择主要依据气动系统的工作压力和流量。气源的工作压力应比气动系统中的最高工作压力高20%左右,因为要考虑供气管道的沿程损失和局部损失。如果系统中某些地方的工作压力要求较低,可以采用减压阀来供气。空气压缩机的额定排气压力分为低压(0.71.0MPa)、中压(1.010MPa)、 高压(10100MPa)和超高压(100MPa以上),可根据实际需求来选择。空气压缩机的供气量可按下面的经验公式计算:(1-1)式中,qz空气压缩机供气量(m3/s);气动设备利用系数K1漏损系数,一般为K1=1.151.5;K2备用系数,一般为1.31.6;qj单台设备的平均自由空气耗量(m3/s)。说明一点:式(3.36)中涉及到的空气流量均指未经压缩的自由状态下 的空气流量。实际流经每台气动设备的压缩空气流量与自由空气流量之间的换算关系为(1-2)式中,qj自由空气流量(m3/s); qy压缩空气流量(m3/s);py压缩空气的绝对压力(MPa); pz自由空气压力(MPa);Tz自由空气绝对温度(K); T压缩空气热力学温度(K)。根据上述计算和实际情况,可以从产品样本上选择相应型号和规格的空气压缩机。3.1.4 气动执行元件气动执行元件是将压缩空气的压力能转化为机械能的能量转换装置,包括汽缸和气马达。汽缸用于实现直线往复运动,气马达用于实现旋转运动。(1)普通汽缸1)单作用单活塞杆汽缸:压缩空气作用在活塞端面上,推动活塞运动,而活塞的反向运动依靠复位弹簧力、重力或其他外力,图形符号如图1-1图1-1单作用单活塞杆汽缸图形符号2)双作用单活塞杆汽缸:活塞在两个方向上的运动都是依靠压缩空气的作用而实现的,图形符号如图1-2图1-2双作用单活塞杆汽缸图形符号3)气动马达 将压缩空气的压力能转换成机械能的能量转换装置,输出转速和转矩,驱动机构作旋转运动,相当于液压马达或电动机。4)气动控制元件气动控制元件是控制和调节压缩空气的压力、流量和方向的元件,以便能正确地实现气动执行元件的预定动作直动式电磁阀: 原理:通电时,电磁线圈产生电磁力把关闭件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把关闭件压在阀座上,阀门关闭。特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。(如图1-3)图1-3第4章 圆形铸造件自动无损探伤自动检测分拣系统的设计圆形铸造件自动无损探伤自动检测分拣系统是用于工业精密铸造件毛胚件的裂纹检测的,本设计程序主要是针对圆形的铸造件来设计的。系统中主要运用了电涡流传感器。探测时如果遇到裂纹,导体电阻率和导磁率就发生变化,电涡流损耗,从而输出电压也相应改变的特性来设计的。4.1 圆形铸造件自动无损探伤检测系统的结构设计图2-1圆形铸造件自动无损探伤检测系统的结构框架图本设计的结构思想就是利用传感器的开关信号来达到分拣好坏元件的目的4.1.1 各部分组成介绍(1)出料台功能介绍它是整个系统的开始,其主要功能就是把铸造好的毛胚件从其位置搬运到检测站,待搬运完成后通过信号决定下一个动作。(2)检测站功能介绍它是整个系统的关键,其主要功能就是来检测铸造毛胚是否有裂痕然后传递信号给搬运站。(3)回收站功能介绍用来存放有裂痕的元件,准备回炉。(4)仓库功能介绍用来存放好的工件,准备精加工。4.1.2 工作过程(1)系统复位、开始当按下“上电按钮”、“复位按钮”后,PLC的外围设备都回到起始位置。这时“开始按钮”中的指示灯开始闪烁,按下“开始按钮”后系统开始工作。(2)机械手下降夹取工件PLC通过单控电磁阀4Y1,4号汽缸带动机械手下降,当到达下限位时,装在4号汽缸上磁性接近开关4B1动作,4B1送出信号至PLC,PLC得到信号后接通双控电磁阀3Y2,机械手爪夹紧等待检测的工件;抓取后PLC使单控电磁阀4Y1失电,4号汽缸带动机械手上升,当到达上限位时,装在4号汽缸缸体上的磁性接近开关4B2动作,4B2送出信号至PLC。(3)机械手顺时旋转60度PLC得到信号后接通双控电磁阀2Y2,2号汽缸带动机械手水平旋转60度,使机械手对准本站检测点,当到达限位时,装在2号汽缸缸体上的磁性接近开关2B1动作,2B1送出信号至PLC。(4)机械手下降放下工件并等待PLC得到信号后使双控电磁阀2Y2失电并接通单控电磁阀4Y1,4号汽缸带动机械手下降,当到达下限位时,装在4号汽缸缸体上的磁性接近开关4B1动作,4B1送出信号至PLC,PLC得到信号后接通双控电磁阀3Y1,机械手夹爪松开将工件放在测试点上。工件放好后PLC使单控电磁阀4Y1失电,4号汽缸带动接写手上升。当到达上限位时,装在4号汽缸缸体上的磁性接近开关4B1动作,4B1送出信号至PLC,机械手进入等待状态。(5)检测台检测台得到4B1的信号后使单控电磁阀5Y1得电,5号汽缸带动1号电涡流式传感器B3下降,当到达下限位时,装在汽缸缸体上的电磁接近开关5B2动作,5B1送出信号给PLC,PLC得到信号后1号电涡流式传感器工作同时单控电磁阀6Y1得电,6号缸带动2号电涡流式传感器B4伸出,当到达限位时装在汽缸缸体上的电磁接近开关6B2送出信号给PLC,PLC得到信号后2号电涡流式传感器工作并检测台开始转动每转过45度角停1秒,每停一次送一次检测结果给PLC做判断(6)回收站回收站在得到有裂痕的信号后使单控阀5Y1,6Y1失电5号,6号汽缸缩回当到达限位后送出信号给PLC,PLC控制7号缸7Y1伸出把有裂痕的工件推入回收站。并控制机械手回复原位。(7)机械手下降取工件当检测完毕后,PLC接通单控电磁阀4Y1,4号汽缸带动机械手下降,当到达下限位时,装在4号汽缸缸体上的磁性接近开关4B1动作,4B1送出信号至PLC,PLC得到信号后接通双控电磁阀3Y2,机械手夹爪夹紧检测点的工件,抓取工件后PLC使单控电磁阀4Y1失电,4号汽缸带动机械手上升,当到达上限位时,装在4号汽缸缸体上的磁性接近开关4B2动作,4B2送出信号至PLC(8)机械手顺时旋转120度PLC得到信号后接通双控电磁阀1Y2,1号汽缸带动机械手水平瞬时旋转120度,使机械手靠近仓库。当到达限位时,装在1号汽缸缸体上的磁性接近开关1B1动作,1B1送出信号至PLC。(9)机械手下降放下工件PLC得到信号后使双控电磁阀1Y2失电并接通单控电磁阀4Y1,4号汽缸带动机械手下降,当到达下限位时,装在4号汽缸缸体上的磁性接近开关4B1动作,4B1送出信号至PLC,PLC得到信号后接通双控电磁阀3Y1,机械手夹爪松开将工件放在工件平台上。工件放好后PLC使单控电磁阀4Y1失电,4号缸带动机械手上升。当到达上限位时,装在4号汽缸缸体上的磁性接近开关4B2动作,4B2送出信号至PLC。(10)机械手逆时旋转90+9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论