




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(a0a0) 的图象与性质的图象与性质 27272 2二次函数二次函数 表格归纳 动画 演示 在同一直角坐标系内,画出函数 与 和 、 与 的图象; 说出下列二次函数图象 、 、 说出各函 数的开口方向、顶点坐标、对称轴、性质,并指出它们之间的关系; 二次函数 的图象和它们图象关系如何?它的开口方 向、顶点坐标、对称轴、性质又分别是什么呢?这就是今天这节课 所要学习的内容。 返回 返回 (1)复习: 函数a的符号开口方向对称轴顶点坐标性质 a0向上y轴(0,0) 当X=0时, y最小0 a0向下y轴(0,0) 当x=0时, y最大0 a0向上y轴(0,k) 当x0时, y最小k a0向下y轴(0,k) 当x0时, y最大k a0向上 直线x h (h,0) 当xh时, y最小0 a0向下 直线x h (h,0) 当xh时, y最大0 y=a(x-h)2 y=ax2k y=ax2 (2)二次函数图象与性质 Xh, x y Xh, x y X0, x y X0, x y X0, x y X0, x y 返回 (3 3)探究活动)探究活动 问题问题2 2: 问题问题3 3: 你能画出二次函数 的图象是什么?并说出这个函数 的开口方向、对称轴和顶点坐标 。 问题1: 几何画板 (3 3)探究活动)探究活动 问题问题1 1: 问题2: 问题问题3 3: 观察二次函数 图象,你能发现这个函数有哪 些性质? 几何画板 (3 3)探究活动)探究活动 问题问题1 1: 问题问题2 2: 问题3: 你能找到在同一直角坐标标系中找到 二次函数 、 、 与 图象的关系吗? 几何画板 (0,0)(2,0) y轴(直线x=0)直线x=2 在x轴(直线y=0)的上方 (除顶点外) 向上 当x=0 时,最小值为0。当x=2 时,最小值为0。 向 平移 个单位长度 向 平移 个单位长度 (2,1) 直线x=2 在x轴(直线y=0)的上方 (除(2,0)点外) 在x轴(直线y=1)的上方 (除(2,1)点外) 向上向上 当x=2 时,最小值为1 。 右 21 上 位置 抛物线 顶点坐标 对称轴 开口方向 增减性 最 值 X0, x y X1, x y X1, x y (0,0)(0,1) y轴(直线x=0)y轴(直线x=0) 在x轴(直线y=0)的上方 (除顶点外) 向上 当x=0 时,最小值为 0 。 当x= 0 时,最小值为 1 。 向 平移 个单位长度 向 平移 个单位长度 (2,1) 直线x=2 在x轴(直线y=1)的上方 (除顶点(0,1) 外) 在x轴(直线y=1)的上方 (除顶点(2,1)外) 向上向上 当x=2 时,最小值为 1 。 上 12 右 位置 抛物线 顶点坐标 对称轴 开口方向 增减性 最 值 X0, x y X0, x y X2, x y 返回返回 当x=2 时,最大值为 1 。 (0,0)(2,0) y轴(直线x=0)直线x=2 在x轴(直线y=0)的下方 (除顶点外) 向下 当x=0 时,最大值为 0 。 当x=2 时,最大值为 0。 向 平移 个单位长度 向 平移 个单位长度 (2,1) 直线x=2 在x轴(直线y=0)的下方 (除顶点(2,0) 外) 直线y=1的下方 (除顶点(2,1) 外) 向下向下 右 21 上 X0, x y X2, x y X2, x y 位 置 抛物线 顶点坐标 对称轴 开口方向 增减性 最 值 向 平移 个单位长度 向 平移 个单位长度 当x=2时,最大值为1 。 (0,0)(0,1) y轴(直线x=0) y轴(直线x=0) 在x轴(直线y=0)的下方 (除顶点外) 向下 当x=0时,最大值为0。 当x=0时,最大值为1。 (2,1) 直线x=2 在直线y=1的下方 (除顶点(0,1) 外) 在直线y=1的下方 (除顶点(2,1) 外) 向下向下 上 12 右 X0, x y X0, x y X2, x y 位 置 抛物线 顶点坐标 对称轴 开口方向 增减性 最 值 返回返回 例:把抛物线 向上平移2个 单位长度,再向左平移4个单位长度,得 到抛物线 ,求h , k的值,并说出 它的性质。 ? 怎样 解答 4实例研讨 返回 5 5随堂练习,及时巩固矫正随堂练习,及时巩固矫正 P13”练习”第1、2、4题; 返回 函数a的符号开口方向对称轴顶点坐标性质 a0向上y轴(0,0) 当X=0时, y最小0 a0向下y轴(0,0) 当x=0时, y最大0 a0向上y轴(0,k) 当x0时, y最小k a0向下y轴(0,k) 当x0时, y最大k a0向上 直线x h (h,0) 当xh时, y最小0 a0向下 直线x h (h,0) 当xh时, y最大0 a0向上 直线x h (h,k) 当xh时, y最小k a0向下 直线x h (h,k) 当xh时, y最大k y=a(x-h)2 y=ax2k y=ax2 Xh, x y Xh, x y X0, x y X0, x y X0, x y X0, x y y=a(x-h)2k Xh, x y Xh, x y 二次函数图象与性质二次函数图象与性质 6 6 收获与体会收获与体会 : : 本课学习了什么形式的二次函数? 画二次函数图象时,列表应注意什么? 它与前面所学的二次函数有何关系? 它的图象的开口方向、顶点坐标、对 称轴、性质分别是什么? 返回 7. 7.独立作业独立作业 返回 P19习题27.2第1题(3),(4) 学生的课堂作图作品不理想,有必要老师自己黑板画一副; 画二次函数图象时,列表取值时学生不会选或随便选,此时应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肾部专业知识培训课件
- 中医特色护理个案
- 老年人知识培训课件
- 美容师面诊知识培训课件
- 绿化工艺知识培训课件
- 给排水专业知识培训课件
- 管理咨询知识分享
- 植物遗传资源利用试题及答案
- 二零二五专卖店装修协议合同
- 二零二五版对外贸易代理合同
- 2022年初中历史课程标准电子版
- 腔内心电图经外周中心静脉导管picc尖端定位技术
- 白酒基础知识考试题库300题(含单选、多选、判断)
- The+Little+Woman英文名著《小妇人》整本书阅读指导课件
- 高等学校学生学籍信息更改审批表
- 慢性胃炎中医症候评分表
- 学生心理健康档案表格
- 临时用电施工组织设计(总体)
- 2023年神东煤炭集团招聘笔试题库及答案解析
- YY/T 1723-2020高通量基因测序仪
- GB/T 40276-2021柔巾
评论
0/150
提交评论