




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
title: radiation protection for particle accelerator facilities: (report no. 144) table: interactive graphs no.x-axis label y-axis label graph title 1proton energy ep (mev)probability of inelastic nuclear reaction occurring before rangeout (%)fig. 3.2. range of protons (right-hand scale) and probability of inelastic nuclear interaction within the range (left-hand scale) 2proton energy ep (mev)range (cm)fig. 3.2. range of protons (right-hand scale) and probability of inelastic nuclear interaction within the range (left-hand scale) 3incident energy e0 (mev)radiation yield (%)fig. 3.3. bremsstrahlung efficiency for electrons stopped in variousmaterials. fraction (in percent) of kinetic energy of incident electrons(e0) converted to radiation, as a function of incident energy (e0). 4atomic number (z )critical energy ec (mev)fig. 3.4. critical energy (ec) as a function of atomic number (z). 5electron energy e0 (mev)absorbed dose rate (rad h-1) (kw m-2)-1fig. 3.5. thick-target bremsstrahlung yield from a high-z target. 6electron energy e0 (mev)absorbed dose rate (gy h-1) (kw m-2)-1fig. 3.5. thick-target bremsstrahlung yield from a high-z target. 7photon energy (mev)photon yield photons (mev sr electron)-1fig. 3.7. bremsstrahlung spectra measured at zero degrees from intermediate-thickness (0.2 x0) targets of high-z material. 8photon energy (mev)photon yield photons (mev sr electron)-1fig. 3.8. spectra of bremsstrahlung photons emerging in various directionsfrom thick tungsten targets irradiated by normally incident,monoenergetic electron beams. (a) kinetic energy 30 mev, thickness z 24 g cm2 (3.6 x0) 9photon energy (mev)photon yield photons (mev sr electron)-1fig. 3.8. spectra of bremsstrahlung photons emerging in various directionsfrom thick tungsten targets irradiated by normally incident,monoenergetic electron beams. (b) kinetic energy 60 mev, z 33 g cm2 (4.9 x0) 10electron energy e0 (mev)photon neutron yield y (neutrons s-1 kw -1)fig. 3.12. yield of photoneutrons produced in electromagnetic cascades initiated by electron incident on thick targets per unit beam power, as a function of incident energy 11muon energy (gev)integrated muon flux density (cm-2 s-1 m2 kw-1)fig. 3.13. integrated muon flux density at 1 m kw-1 of electron beam power as a function of muon energy for 20 gev electrons incident on a thick iron target at several values of . 12electron energy e0 (gev)muon flux density (cm-2 s-1 m2 kw-1) x 105fig. 3.14. muon flux density at zero degrees at 1 m from an unshielded irontarget per kilowatt of electron beam power as a function of electron energy (e0) 13depth (z/l)fraction of total energy per unit length (u/l)fig. 3.15. fraction of total energy per unit length (u/l) deposited by anelectromagnetic cascade versus depth z (in units of l), integrated over all radii about the shower axis 14cylindrical radius (r/xm)fraction of energy beyond radius rfig. 3.16. fraction of total energy (u) deposited outside a cylindrical radius (r/xm) as a function of radius for showers caused by 0.1 to 20 gevelectrons incident on various materials 15energy of bombarding particle ea (mev)neutron energy (mev)fig. 3.18. neutron energy in the forward direction ( = 0 degrees) and backwarddirection ( = 180 degrees) for the3h(p,n)3he, 7li(p,n)7be, and 3h(d,n)4hereactions versus energy of the bombarding particle 16proton energy ep (mev)total neutron yield per proton (n/p)fig. 3.21. total neutron yield per proton for different target materials 17emission angle (degrees)total neutron yield neutrons (sr proton)-1fig. 3.23. angular distributions of total neutron yield above 3 mev for four targets bombarded by 30 mev protons 18energy of emitted protons or neutrons (mev)fraction of incident nucleons (mev-1)fig. 3.29. energy spectra of cascade nucleons emitted from aluminum 19proton energy ep (mev)neutrons (mev protons)-1fig. 3.30. cascade and evaporation neutron emission per incident proton from 450, 600 and 850 mev protons on aluminum 20angle (degrees)neutron angular distribution g ()fig. 3.31. the neutron angular distribution g()=dy()/d ofneutrons above 20 mev produced by 14 and 26 gev protons incidenton a thin beryllium target 21angle (degrees)neutron angular distribution g ()fig. 3.32. the neutron angular distribution g()=dy()/d ofneutrons above 600 mev produced by 14 and 26 gev protons incidenton a thin beryllium target 22concrete thickness d (g cm-2)dose equivalent expressed as r2h (sv cm2 proton-1)fig. 3.36. calculations of dose equivalent per incident proton multiplied bydistance squared (r2h) as a function of concrete shield thickness(d) averaged over several intervals of for 200 mev protons incident on analuminum target of two different thicknesses (alsmiller et al., 1975). 23energy (gev)range (m) fig. 3.39. range-energy curves for muons in various materials. 24neutron energy (mev)neutron fluence spectrum d (e ) / d(log e ) (arbitrary units)fig. 3.42. unfolded neutron fluence spectrum at 2 m from the beam linefor four different types of operating conditions of the fermilab tevatron (ft)and one operating condition of the fermilab main ring (fmr) 25energy (mev)percentage of quantities efig. 3.43. fraction of absorbed dose and neutron fluence above energy efor the 800 gev spectrum of figure 3.42 26neutron energy en (mev)neutron energy spectra e (e)fig. 3.47. energy spectrum of neutrons emerging from the shield of a 500mev proton linear accelerator. 27specific kinetic energy t/m (mev/amu-1)stopping power (-dt/de)/z2 (mev cm-2 g)fig. 3.48. stopping power (a) and ranges (b) for protons in three materials. 28specific kinetic energy t/m (mev/amu-1)normalized range rz2/m (g cm-2 amu-1)fig. 3.48. stopping power (a) and ranges (b) for protons in three materials. 29energy (mev)range (mg cm-2)fig. 3.51.a. range versus energy for several 12c ions in five different materials 30energy (mev)range (mg cm-2)fig. 3.51.b. range versus energy for several 14n ions in five different materials 31energy (mev)range (mg cm-2)fig. 3.51.c. range versus energy for several 20ne ions in five different materials 32specific energy (mev amu-1)neutron yield (ion-1 x 10-4)fig. 3.53. neutron yields from thick-target (silver, tantalum and uranium) bombardmentsby carbon and neon ions having specific energiesfrom approximately 5.8 to 10 mev amu-1 33neutron energy e (mev)differential neutron fluence (e )e (neutrons cm-2 ion-1) (x 10-11)fig. 3.56.a. differential neutron fluence (e)e at = 0, 1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 34neutron energy e (mev)dose equivalent above energy r (e)(%)fig. 3.56.b. percent of dose equivalent above energy (e), r(e), at = 0,1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 35neutron energy e (mev)differential neutron fluence (e )e (neutrons cm-2 ion-1) (x 10-11)fig. 3.56.c. differential neutron fluence (e)e at = 45, 1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 36neutron energy e (mev)dose equivalent above energy r (e)(%)fig. 3.56.d. percent of dose equivalent above energy (e), r(e), at = 45, 1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 37neutron energy e (mev)differential neutron fluence (e )e (neutrons cm-2 ion-1) (x 10-11)fig. 3.56.e. differential neutron fluence (e)e at = 90, 1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 38neutron energy e (mev)dose equivalent above energy r (e)(%)fig. 3.56.f. percent of dose equivalent above energy (e), r(e), at = 90, 1 m froma thick copper target bombarded by6.6 mev amu-1 58ni ions 39specific energy w = e /a (mev amu-1)total neutron yield y (neutron ion -1)fig. 3.60. total neutron yield as a function of specific energy for a variety of ions 40atomic number (z )cross section (mb)fig. 3.63. mass-yield curves (cross section versus z) for the bombardmentof bismuth by protons of the indicated bombarding energies 41cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.a. barbier danger parameter ( ) for carbon irradiated by protonsof 50 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 42cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.b. barbier danger parameter ( ) for carbon irradiated by protonsof 500 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 43cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.c. barbier danger parameter ( ) for silver irradiated by protonsof 50 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 44cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.d. barbier danger parameter ( ) for silver irradiated by protonsof 500 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 45cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.e. barbier danger parameter ( ) for tungsten irradiated by protonsof 50 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 46cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.f. barbier danger parameter ( ) for tungsten irradiated by protonsof 500 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 47cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.g. barbier danger parameter ( ) for lead irradiated by protonsof 50 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 48cooling time tc (d)danger parameter (mrad h-1 proton-1 cm2 s)fig. 3.64.h. barbier danger parameter ( ) for lead irradiated by protonsof 500 mev for different irradiation times (ti) as a function ofcooling times since cessation of the irradiation(tc) (1 mrad h-1 = 10 gy h-1) 49electron energy e0 (mev)tenth-value layer (g/cm-2)fig. 4.1. values of dose-equivalent tvls pt in ordinary concrete,iron (steel) and lead, for thick-target bremsstrahlung under broad-beam conditionsat zero degrees, as a function of the energy e0of electrons incident on high-z target. 50thickness x (cm)transmission factor (t)fig. 4.2. (a) transmission factor (t) of thick-target bremsstrahlung by ordinary concrete (2.35 g cm-3)under broad-beam conditions at zero degrees with respect to the incidentelectron beam, as a function of shielding thickness (x). 51thickness x (cm)transmission factor (t)fig. 4.2. (b) transmission factor (t) of thick-target bremsstrahlung by iron (steel, 7.8 g cm-3)under broad-beam conditions at zero degrees with respect to the incidentelectron beam, as a function of shielding thickness (x). 52thickness x (cm)transmission factor (t)fig. 4.2. (c) transmission factor (t) of thick-target bremsstrahlung by lead (11.35 g cm-3)under broad-beam conditions at zero degrees with respect to the incidentelectron beam, as a function of shielding thickness (x). 53thickness of concrete px (g/cm-2)dose equivalent hn (rem cm2/neutron-1)fig. 4.5. attenuation of broad beams of monoenergetic, unidirectional neutronsperpendicularly incident on ordinary concrete. 54neutron energy (mev)attenuation length p (kg m-2)fig. 4.6. the variation of the attenuation length (rl) for monoenergetic neutronsin concrete as a function of neutron energy. 55neutron energy (mev)dose equivalent per unit neutron fluence at zero depth h0 (sv m-2)fig. 4.7. the variation of the parameter (h0) as a function ofmonoenergetic neutron energy. 56thickness of concrete px (g cm-2)dose equivalent hn (rem cm2 neutron-1)fig. 4.8. attenuation of unidirectional broad beams of neutrons, for representativephotoneutron spectra, perpendicularly incident on ordinary concrete. 57incident photon energy (mev)reflection coefficient (x)fig. 4.12.a. reflection coefficients (x) for monoenergetic photonsincident on ordinary concrete as a function of incident photonenergy, for several reflection angles, assuming normal incidence. 58incident photon energy (mev)reflection coefficient (x)fig. 4.12.b. reflection coefficients (x) for monoenergetic photonsincident on ordinary concrete as a function of incident photonenergy, for several reflection angles, assuming equal angles of incidence and reflection. 59incident photon energy (mev)reflection coefficient (x)fig. 4.12.c. reflection coefficients (x) for monoenergetic photonsincident on iron as a function of incident photonenergy, for several reflection angles, assuming normal incidence. 60incident photon energy (mev)reflection coefficient (x)fig. 4.12.d. reflection coefficients (x) for monoenergetic photonsincident on iron as a function of incident photonenergy, for several reflection angles, assuming equal angles ofincidence and reflection. 61incident neutron energy (mev)reflection coefficient (n)fig. 4.13.a. reflection coefficients (n) for monoenergetic neutronsincident on ordinary concrete as a function of incident neutron energy,for several angles of reflection, assuming normal incidence. 62incident neutron energy (mev)reflection coefficient (n)fig. 4.13.b. reflection coefficients (n) for monoenergetic neutronsincident on ordinary concrete as a function of incident neutron energy,for several angles of reflection, equal angles of incidenceand reflection. 63incident neutron energy (mev)reflection coefficient (n)fig. 4.13.c. reflection coefficients (n) for monoenergetic neutronsincident on iron as a function of incident neutron energy,for several angles of reflection, assuming normal incidence. 64incident neutron energy (mev)reflection coefficient (n)fig. 4.13.d. reflection coefficients (n) for monoenergetic neutronsincident on iron as a function of incident neutron energy,for several angles of reflection, equal angles of incidenceand reflection. 65bremsstrahlung energy e0 (mev)differential absorbed dose albedofig. 4.14.(a) effective differential absorbed-dose albedo for bremsstrahlung beamsof endpoint energy (e0) incident on water, for 45 degreesincidence (upper curves) and perpendicular incidence (lower curves),for representative scattering angles (s). 66bremsstrahlung energy e0 (mev)differential absorbed dose albedofig. 4.14.(b) effective differential absorbed-dose albedo for bremsstrahlung beamsof endpoint energy (e0) incident on ordinary concrete, for 45 degreesincidence (upper curves) and perpendicular incidence (lower curves),for representative scattering angles (s). 67bremsstrahlung energy e0 (mev)differential absorbed dose albedofig. 4.14.(c) effective differential absorbed-dose albedo for bremsstrahlung beamsof endpoint energy (e0) incident on iron(steel), for 45 degreesincidence (upper curves) and perpendicular incidence (lower curves),for representative scattering angles (s). 68bremsstrahlung energy e0 (mev)differential absorbed dose albedofig. 4.14.(d) effective differential absorbed-dose albedo for bremsstrahlung beamsof endpoint energy (e0) incident on lead, for 45 degreesincidence (upper curves) and perpendicular incidence (lower curves),for representative scattering angles (s). 69lateral distance in units of xmlongitudinal distance in units of x0fig. 4.18. isopleths for absorbed dose (in units of rad per incident electron) in leadbased on measurements of the longitudinal and lateraldevelopment of 6 gev electromagnetic cascades 70photon energy e0 (mev)neutron production cross section mb (target nucleon)-1fig. 4.19. the neutron production cross section versus photon energy, via threeprincipal production mechanisms. 71electron energy (gev)dose equivalent source term (sv h-1 cm2 kw-1)fig. 4.21. effective source terms as a function of electron energy for athick-copper target for neutrons of energy 25 to 100 mev and for neutronsof energy greater than 100 mev. 72shield thickness (cm)photon dose (rad cm2 gev-1 e-)fig. 4.24. photon dose in the forward direction for iron and lead as afunction of shield thickness for 5 gev incident electrons 73energy threshold (mev)relaxation parameter (radians-1)fig. 4.29. the angular distribution parameter of the moyer model as afunction of detection energy threshold 74primary proton energy ep (gev)moyer parameter (ep) (sv m2 x 10-13)fig. 4.30. the source strength parameter () of the moyer modelas a function of primary proton energy. 75angle (degrees)ratio f ()fig. 4.31. ratio of dose equivalent on the outer shield surface as afunction of angle with respect to beam direction (point source loss)to the same quantity at /2 radians (90 degrees). 76distance from start of beam loss (z /r)dose equivalent at 1 m (sv)fig. 4.32. the variation of dose equivalent on the outer shield surfaceas a function of position along the beam direction for differentbeam spill lengths 0.0002 4. 77spill length ()maximal dose equivalent hm (sv x 10-16)fig. 4.33. the maximal dose equivalent (hm) on the shield surface for afinite uniform beam loss as a function of beam spill length parameter (). 78depth in shield (z/)number of particles in cascade per incident particle (n/n0)fig. 4.34. development of the one-dimensional cascade in the lindenbaumapproximation with n =1 to 4 and m = 1, 2 and 5. 79depth in shield (cm)radius in shield perpendicular to beam (cm)fig. 4.36. contours of equal star density (stars cm-3, per incident proton)generated by 30 gev c-1 protons incident on a solid iron cylinder. 80depth z (m)effective source strength s (z
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 系统架构师职业能力的构建考题试题及答案
- 行为医学第三试题及答案
- 卫生管理证书考试动态了解试题及答案
- 网络规划设计师考试中的基础知识讲解试题及答案
- 系统架构设计师考试背景中的知识更新机制与现实应用考察试题及答案
- 激光工程师证书考试的复习策略试题及答案
- 系统架构设计师的持续学习与考试适应性试题及答案
- 药剂考试学生成果转化试题及答案
- 药物质量标准与控制考题试题及答案
- 系统架构设计师考试各模块重点解析试题及答案
- 低碳环保管理制度
- 2024年宪法知识竞赛必考重点知识(共50个)
- 2024年江苏省淮安市中考一模物理试题(含答案解析)
- 风电场检查合同协议书
- 佛云学校多功能室、电教室、体育馆设备采购项目招标文件
- 人教八年级上册数学《从分数到分式》教学课件
- 揭阳市人民医院检验科 标本采集手册
- 幼儿园班级幼儿图书目录清单(大中小班)
- 烈士陵园的数字化转型与智能服务
- 小学科学实验教学的现状及改进策略的研究
- JT-T-961-2020交通运输行业反恐怖防范基本要求
评论
0/150
提交评论