新人教a版必修1高中数学2.2.2 对数函数及其性质导学案_第1页
新人教a版必修1高中数学2.2.2 对数函数及其性质导学案_第2页
新人教a版必修1高中数学2.2.2 对数函数及其性质导学案_第3页
新人教a版必修1高中数学2.2.2 对数函数及其性质导学案_第4页
新人教a版必修1高中数学2.2.2 对数函数及其性质导学案_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.2对数函数及其性质班级:_姓名:_设计人_日期_课前预习 预习案【温馨寄语】你有涌泉一样的智慧和一双辛勤的手,不管你身在何处,幸运与快乐时刻陪伴着你!【学习目标】1理解对数函数的定义和意义.2了解反函数的概念.3掌握对数函数的图象和性质.【学习重点】对数函数的图象与性质【学习难点】对数函数的图象与性质【自主学习】1对数函数的定义(1)解析式为: .(2)自变量是: .2对数函数的图象和性质3反函数指数函数,且)与对数函数 互为反函数.【预习评价】1若函数与互为反函数,则A. B. C. D.不确定2函数的定义域为A.(1,+) B. C.(-,1) D.3对数函数与的图象如图,则A. B.C. D.4已知函数,则的值为 .5若对数函数的图象经过点(8,3),则函数的解析式为 .6对数函数在定义域内是减函数,则的取值范围是 .知识拓展 探究案【合作探究】1对数函数的图象与性质 (1)在同一坐标系内画出函数和的图象.并说出函数图象从左到右的变化趋势.(2)在问题(1)所画图象的基础上,现画出函数和的图象,观察所画出的两个函数图象的变化趋势及这四个函数图象的特征,回答下列问题:函数和的图象从左到右的变化趋势是怎样的?函数和的图象间有什么关系?和呢?观察所画出的四个函数的图象,请说出对数函数图象的大致走势有几种?主要取决于什么?2对数函数的解析式 请你根据所学过的知识,思考对数函数解析式中的底数能否等于0或小于0?3对数函数的解析式 根据对数函数的解析式,完成下列填空,并明确其具有的三个结构特征(1)特征1:底数曾大于0且不等于1的 ,不含有自变量.(2)特征2:自变量的位置在 ,且的系数是 .(3)特征3:的系数是 .【教师点拨】1对数函数值的变化规律(1)(2)2对对数函数图象与性质的三点说明(1)定点:所有对数函数的图象均过定点(1,0).(2)对称性:底数互为倒数的对数函数图象关于轴对称.(3)图象随底数变化规律:在第一象限内,底数自左向右依次增大.3确定对数函数解析式的关键确定对数函数解析式的关键是确定底数的值.4对对数函数一般形式的说明(1)定义中所说的形如的形式一般来说是不可改变的,否则就不是对数函数.(2)解析式中底数取值范围为,其他范围都是不可以的.【交流展示】1下列函数中是对数函数的是 .(1) y=lgx .(2) y=log2x+1 .(3) y=-log3x .(4) y=logx3 .(5) y=log3x+1 .2若对数函数fx 的图象过点A4,2,求 fx 及 f8.3函数fx=logax-1a0,a1 的图象恒过定点 .4画出函数y=log5x 的图象,并指出其值域和单调区间.5函数fx=3x21-x+lg3x+1 的定义域是A.-13,+B.-13,1C.-13,13 D.-,-13 6求下列函数的定义域.(1) y=1lg x+1-3 .(2) y=loga3-4xa0,且a1 .7若 loga23loga1-x .9已知函数 fx=2+log3x , x1,9 ,则函数 fx2+fx2 的最大值为 .10已知函数 fx=logax+1 ,gx=loga1-x a0,且a1,设 hx=fx-gx.(1)求函数 hx 的定义域,判断它的奇偶性.(2)若 f3=2 ,求hx0 的解集.【学习小结】1判断一个函数是对数函数的方法(1)看形式:判断一个函数是否是对数函数,关键是看解析式是否符合这一结构形式.(2)明特征:对数函数的解析式具有三个特征,只要有一个特征不具备,则不是对数函数.2对数函数性质的综合应用(1)常见的命题方式:对数函数常与函数的奇偶性、单调性、最大(小)值以及不等式等问题综合,求解中通常会涉及对数运算.(2)解此类问题的基本思路:首先要将所给的条件进行转化,然后结合涉及的知识点,明确各知识点的应用思路、化简方向,与所求目标建立联系,从而找到解决问题的思路.3解对数不等式的两种类型及转化方法(1)当时,;(2)当时,提醒:解简单对数不等式时不要忘记真数大于0这一条件.4对数式比较大小的三种类型和求解方法(1)底数相同时,利用单调性比较大小.(2)底数与真数均不相同时,借助于0或1比较大小.(3)真数相同时,可利用换底公式换成同底,再比较大小,但要注意对数值的正负.5解答型或型函数要注意的问题(1)要注意变量的取值范围.例如,则中需有;中需有.(2)判断型或型函数的奇偶性,首先要注意函数中自变量的范围,再利用奇偶性的定义判断.【当堂检测】1设a=log132 ,b=log23 ,c=log0.20.3 ,则A.abcB.acbC.bcaD.bac2已知 a=log0.50.6 , b=log20.5 , c=log35 ,则A.abcB.bacC.acbD.ca0,且a1 的反函数,其图象经过点32,23,则a= .5求下列函数的定义域:(1) y=logx-13-x . (2) y=log124x-3 .6比较下列各组数的大小:(1) log32.5 与 log33.7 . (2) log0.22 与 log0.24.1 .(3) log30.24 与 log0.20.24 . (4) loga3 与 loga3.1 .7设函数 fx=log2x,x0,log12-x,xf-a ,求实数a 的取值范围.8已知 fx=loga1+x1-xa1 ,完成下列问题:(1)求 fx 的定义域.(2)判断的 fx 奇偶性并予以证明.(3)求使 fx0 的 x 的取值范围.答案课前预习 预习案【自主学习】1(1)ylogax(a0,且a1)(2)x2(0,)R(1,0)增减3ylogax(a0,且a1)【预习评价】1A2B3C425f(x)log2x6(1,2)知识拓展 探究案【合作探究】1(1)列表x1234ylog2x2log23101log232ylog3xlog341log320log321log34描点画图图象的变化趋势:这两个函数的图象从左到右均是不断上升的.(2)图象如图所示: 这两个函数的图象从左到右是下降的.结合图形,函数ylog2x和的图象关于x轴对称,同样,函数ylog3x和的图象也关于x轴对称.对数函数图象的大致走势有两种,一种是从左到右图象是下降的,而另一种恰好相反,图象的走势主要取决于底数a与1的大小关系.2因为,而在指数函数中底数a需满足a0且a1,故在对数函数解析式中a的取值范围不能等于0或小于0.3(1)常数(2)真数上1(3)1【交流展示】1(1)(3)2设f(x)logax(a0且a1),因为f(4)2,所以loga42,所以a24,又a0且a1,所以a2.所以f(x)log2x,所以f(8)log283.3(2,0)4因为当x0时ylog5x;当x0时ylog5(x),所以函数ylog5|x|的图象如图所示.由图象可知,ylog5|x|的值域为R,递增区间为(0,),递减区间为(,0).5B6(1)由lgx+1-30,x+10,得x+1103x-1,所以x1且x999,所以函数的定义域为x|x1且x999.(2)loga(34x)0.(*)当a1时,(*)可化为loga(34x)loga1,所以34x1,x12.当0a1时,(*)可化为loga(34x)loga1,所以034x1,12x34.综上所述,当a1时,函数定义域为(,12;当0a1时,函数定义域为(12,34.7C8当a1时原不等式1x0,x+11-xx00x1;当0a1时原不等式x+102x-1-1x0,综上,当a1时原不等式的解集为(0,1),当0a1时原不等式的解集为(1,0).91310(1)因为f(x)loga(x1)(a0,且a1)的定义域为(1,),g(x)loga(1x)(a0,且a1)的定义域为(,1).所以函数h(x)的定义域为(1,1).因为h(x)loga(1x)loga(1x)-loga(1x)loga(1x)h(x),所以h(x)为奇函数.(2)因为f(3)loga42,所以a2,所以h(x)0f(x)g(x),即log2(1x)log2(1x),所以1x0,1x0,解得1x0,故h(x)0的解集为x|1x0.【当堂检测】1B2B3A425(1)(1,2)(2,3)(2)(34,16(1)因为f(x)log3x为增函数,且2.53.7,所以log32.5log33.7.(2)因为f(x)log0.2x为减函数,且24.1,所以log0.22log0.24.1.(3)因为log30.24log310,log0.20.24log0.210,所以log30.24log0.20.24.(4)当a1时,因为f(x)logax为增函数,且33.1,所以loga3loga3.1;当0a1时,同理可得,loga3loga3.1.7(1)当a0时,a0,f(a)log2a,f(a)log12a.因为f(a)f(a),所以log2alog12a,所以log2alog2a,所以log2a0,所以log2alog21,所以a1.(2)当a0时,a0,f(a)log12(-a),f(a)log2(a).因为f(a)f(a),所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论