章 抽样分布与参数估计 ppt课件_第1页
章 抽样分布与参数估计 ppt课件_第2页
章 抽样分布与参数估计 ppt课件_第3页
章 抽样分布与参数估计 ppt课件_第4页
章 抽样分布与参数估计 ppt课件_第5页
已阅读5页,还剩77页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

统计学导论 曾五一 肖红叶 主编 3-1 第四章 抽样分布与参数估计 n第一节 抽样的基本概念与数学原理 n第二节 抽样分布 n第三节 参数估计 n第四节 样本容量的确定 n第五节 EXCEL在参数估计中的应用 2 第一节 抽样的基本概念与数学原理 n一、有关抽样的基本概念 n二、大数定理与中心极限定理 3 一、有关抽样的基本概念 (一)样本容量与样本个数 1.样本容量。样本是从总体中抽出的部分单位 的集合,这个集合的大小称为样本容量,一 般用n表示,它表明一个样本中所包含的单位 数。 一般地,样本单位数大于30个的样本称为大样 本,不超过30个的样本称为小样本。 2.样本个数。样本个数又称样本可能数目,它 是指从一个总体中可能抽取多少个样本。 4 (二)总体参数与样本统计量 1.总体参数。总体分布的数量特征就是总体的 参数,也是抽样统计推断的对象。 常见的总体参数有:总体的平均数指标,总体 成数(比例)指标,总体分布的方差、标准差等 等。它们都是反映总体分布特征的重要指标 。 (二)总体参数与样本统计量 5 2.样本统计量。样本统计量是样本的一个函数 。它们是随机变量。我们利用统计量来估计 和推断总体的有关参数。 常见的样本统计量有: 样本平均数,样本比例, 样本的方差、标准差。 (二)总体参数与样本统计量 6 n所谓概率抽样,就是要求对总体的每一次观 察(每一次抽取)都是一次随机试验,并且 有和总体相同的分布。按这样的要求对总体 观测(抽取)n次,可得到容量为n的样本。 (三)概率抽样及其组织形式 7 8 9 n(四)放回抽样与不放回抽样 10 2.不放回抽样 11 从总体中可以随机地抽取许多样本,由每一个 样本都可以计算样本统计量的观测值,所有 可能的样本观测值及其所对应的概率便是所 谓的抽样分布。因此,抽样分布也可以称为 样本统计量的概率分布。 抽样分布可能是精确地服从某种已知分布(所 谓已知分布,例如我们在第四章介绍过的各 种常见分布),也可能是以某种已知分布为 极限分布。在实际应用中,后者更为多见。 (五)抽样分布 12 13 14 第 二 次 抽 取 可 能 被 抽 中 的 人 员 12345678910 第 一 次 抽 取 可 能 被 抽 中 的 人 员 1 1,1 (1) 1,2 (1.5) 1,3 (2) 1,4 (2.5) 1,5 (3) 1,6 (3.5) 1,7 (4) 1,8 (4.5) 1,9 (5) 1,10 (5.5) 2 2,1 (1.5) 2,2 (2) 2,3 (2.5) 2,4 (3) 2,5 (3.5) 2,6 (4) 2,7 (4.5) 2,8 (5) 2,9 (5.5) 2,10 (6) 3 3,1 (2) 3,2 (2.5) 3,3 (3) 3,4 (3.5) 3,5 (4) 3,6 (4.5) 3,7 (5) 3,8 (5.5) 3,9 (6) 3,10 (6.5) 4 4,1 (2.5) 4,2 (3) 4,3 (3.5) 4,4 (4) 4,5 (4.5) 4,6 (5) 4,7 (5.5) 4,8 (6) 4,9 (6.5) 4,10 (7) 5 5,1 (3) 5,2 (3.5) 5,3 (4) 5,4 (4.5) 5,5 (5) 5,6 (5.5) 5,7 (6) 5,8 (6.5) 5,9 (7) 5,10 (7.5) 6 6,1 (3.5) 6,2 (4) 6,3 (4.5) 6,4 (5) 6,5 (5.5) 6,6 (6) 6,7 (6.5) 6,8 (7) 6,9 (7.5) 6,10 (8) 7 7,1 (4) 7,2 (4.5) 7,3 (5) 7,4 (5.5) 7,5 (6) 7,6 (6.5) 7,7 (7) 7,8 (7.5) 7,9 (8) 7,10 (8.5) 8 8,1 (4.5) 8,2 (5) 8,3 (5.5) 8,4 (6) 8,5 (6.5) 8,6 (7) 8,7 (7.5) 8,8 (8) 8,9 (8.5) 8,10 (9) 9 9,1 (5) 9,2 (5.5) 9,3 (6) 9,4 (6.5) 9,5 (7) 9,6 (7.5) 9,7 (8) 9,8 (8.5) 9,9 (9) 9,10 (9.5) 10 10,1 (5.5) 10,2 (6) 10,3 (6.5) 10,4 (7) 10,5 (7.5) 10,6 (8) 10,7 (8.5) 10,8 (9) 10,9 (9.5) 10,10 (10) 表5-310人中有放回抽二人的全部可能样本 15 n表5-4任职年限样本均值分布数列 16 17 二、大数定理与中心极限定理 18 n 大数定理表明:尽管个别现象受偶然因 素影响,有各自不同的表现。但是,对总体 的大量观察后进行平均,就能使偶然因素的 影响相互抵消,消除由个别偶然因素引起的 极端性影响,从而使总体平均数稳定下来, 反映出事物变化的一般规律。 19 20 从正态分布的再生定理可以看出,只要 总体变量服从正态分布,则从中抽取的样本 ,不管n是多少,样本平均数都服从正态分 布。但是在客观实际中,总体并非都是正态 分布。对于从非正态分布的总体中抽取的样 本平均数的分布问题,需要由中心极限定理 来解决。 21 (三)中心极限定理 22 23 第二节 抽样分布 n一、样本平均数的抽样分布 n二、样本比例的抽样分布 24 一、样本平均数的抽样分布 (一)样本平均数的期望值与方差 25 26 27 28 n(二)样本平均数的分布规律 29 30 31 二、样本比例的抽样分布 n(一)样本比例的期望值与方差 32 33 34 35 (二)样本比例的分布规律 36 表5-5 用正态分布来近似时对样本量的要求 总 体 参 数 0.50 0.45 0.40 0.3 5 0.3 0 0.2 5 0.2 0 0.1 5 0.1 0 1 0.50 0.55 0.60 0.6 5 0.7 0 0.7 5 0.8 0 0.8 5 0.9 0 样本量 至少为 n3637384043485771100 37 n(三)样本方差的抽样分布 38 39 第三节 参数估计 n一、参数估计概述 n二、总体均值的估计 n三、总体比例的估计 n四、总体方差的估计 40 一、参数估计概述 (一)参数估计的定义与种类 所谓参数估计,就是用样本统计量去估计总体 的未知参数(或参数的函数)。 例如,估计总体均值,估计总体比例和总体方 差。 参数估计有两种基本形式: 点估计是用一个数值作为未知参数的估计。 区间估计是给出具体的上限和下限,把 包括在 这个区间内。 41 点估计,主要有矩估计法和最大似然估计法。 矩估计法是用样本矩去估计总体矩(或是用样本矩的 函数去估计总体矩的相应函数)的一种估计方法, 由此获得的估计量称作矩估计量。 最大似然估计法是把待估计的总体参数看作一个可以 取不同数值的变量,计算当总体参数取上述不同数 值的时候,发生我们当前所得到的样本观测值的不 同概率,总体参数取哪一个数值的时候这种概率最 大,便把这个数值作为对总体参数的估计结果。 (二)点估计 42 n(三)估计量的优良标准 2. 有效性。又称最小方差性。 43 4. 充分性。估计量包含了样本中关于的全部信息。 44 n(四)区间估计与估计的精度和可靠性 45 46 47 n二、总体均值的估计 48 49 50 51 52 53 54 n(二)总体方差2未知的情形 55 2. 区间估计 56 57 58 n【例5-4】在例5-3中,若总体方差未知,但通过抽 取的6个样本测得的样本方差为0.0025,试在0.95 的置信度下,求该产品直径的均值置信区间。 59 n三、总体比例的估计 60 61 62 n三、总体方差的估计 63 (二)区间估计 64 65 第四节 样本容量的确定 n一、问题的提出 n二、估计总体均值时样本容量的确定 n三、估计总体比例时样本容量的确定 n四、使用上述公式应注意的问题 66 由前面的论述,我们已知参数估计中的精度要 求与可靠性要求常常是一对矛盾,但是,通过增加 样本容量n有可能降低样本平均数的标准差,从而实 现既保证一定的估计精度,又具有较高的置信度的 目的。这时,需要考虑在给定的置信度与极限误差 的前提下,样本容量n究竟取多大合适?这就是所谓 样本容量的确定问题。 一、问题的提出 67 二、估计总体均值时样本容量的确定 68 69 70 三、估计总体比例时样本容量的确定 71 四、使用上述公式应注意的问题 1计算样本容量时,总体的方差与成数常常 是未知的,这时可用有关资料替代:一是用 历史资料已有的方差与成数代替;二是在进 行正式抽样调查前进行几次试验性调查,用 试验中方差的最大值代替总体方差;三是比 例方差在完全缺乏资料的情况下,就用比例 方差的最大可能值0.25代替。 72 2.如果进行一次抽样调查,需要同时估计总体 均值与比例,可用上面的公式同时计算出两 个样本容量,取其中较大的结果,同时满足 两方面的需要。 四、使用上述公式应注意的问题 3.上面的公式计算结果如果带小数,这时样本容 量不按四舍五入法则取整数,取比这个数大 的最小整数代替。例如计算得到:n=56.03, 那么,样本容量取57,而不是56。 73 74 75 76 77 第五节 Excel在参数估计中的应用 n【例5-9】用Excel完成本章思考与练习计算题 的第1题。 解:操作步骤如下。 1构造工作表。如图5-3所示,A、B列为原 始输入数据,A2:A16存放的是关于最大飞行 速度的数据,图中未完全显示出来。C、D列 为计算结果,分别在C2、D2单元格存放置信 下限和上限。 78 2定义变量名。将A列命名为“x”,将B2单元 格命名为“置信水平”。 3计算置信上、下限。 分别在C2、D2中输入如下的公式: =AVERAGE(x)-TINV(1-置信水平, COUNT(x)-1) *STDEV(x)/SQRT(COUNT(x) =AVERAGE(x)+TINV(1-置信水平, COUNT(x)-1)*STDEV(x)/SQ

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论