漫谈几何直观ppt课件_第1页
漫谈几何直观ppt课件_第2页
漫谈几何直观ppt课件_第3页
漫谈几何直观ppt课件_第4页
漫谈几何直观ppt课件_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

漫谈 “几何直观 ” 走进 “后课标时代 ” “课标时代 ” v 2005年 6月,教育部成立 标准 修订组,由 14人组成。 2007年 10月完稿, 2011年 2月审定。 v 数学教授 6人: 史宁中(东北师大) 王尚志(首都师大) 张英伯(北师大) 顾沛(南开大学) 柳彬(北大) 李文林(中科院) v 数学教育教授 5人: 黄翔(重庆师大) 马云鹏(东北师大) 马复(南师大) 刘晓枚(首都师大) 张丹(北京教育学院) v 数学教研员 1人: 杨裕前(常州教研室) v 数学教师 2人: 张思明(北大附中) 储瑞年(北师大附中) 义务教育数学课程标准(修订稿) 九大变化 变化一: 基本理念 “ 三句 ” 变 “ 两句 ” , “ 6条 ” 改 “ 5条 ” 人人学有价值的数学 人人都能获得必需的数学 不同的人在数学上得到不同的发展 人人都能获得良好的数学教育 数学课程 数学 数学学习 数学教学 评价 信息技术 数学课程 课程内容 教学活动 学习评价 信息技术 有更深的意义和更广的内涵,落脚点是数学教 育而不是数学内容,有更强的时代精神和要求 。 (前移) (新增) (合并) 不同的人在数学上得到不同的发展 v 要处理好四个关系 过程和结果的关系;学生自主学习和教师讲授 的关系;合情推理和演绎推理的关系;生活情境和知识系统性的关系 v 有效的教学活动是什么 v 数学课程基本理念(两句话) v 数学教学活动的本质要求 v 培养良好的数学学习习惯 v 注重启发式 v 正确看待教师的主导作用 v 处理好评价中的关系 v 注意信息技术与课程内容的整合 变化二: 理念中新增加的提法 变化三: 关于数学观 。 数学是研究数量关 系和空间形式的科学。 树立正确的数学教学观 :教学活动是师生积极参与、交往 互动、共同发展的过程。有效的教学活动是学生学与教师教的 统一,学生是学习的主体,教师是学习的组织者、引导者与合 作者。 教学中最需要考虑的是什么? 数学教学活动应激发学生兴 趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造 性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰 当的数学学习方法。 数学是人们对客观世界定性把握和 定量刻画、逐渐抽象概括、形成方法和 理论,并进行广泛应用的过程 。 关于 教学 观 变化四: “ 双基 ” 变 “ 四基 ” 基础知识、基本技能 、 基本思想、基本活动经验 常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想 方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、 集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换 思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学 模型思想方法、整体思想方法等等。 (掌握) (训练) (领悟) (积累) 最重要的是: 数学抽象 数学推理 数学模型 最上位的是: 演绎思想 归纳思想 奠基的 初步的 关键、核心的 朴素的、直接的 v 学段划分保持不变; v 对课程目标动词及水平要求的设计基本保持不变 ,增加了目标动词的同义词; v 对四个学习领域的名称作适当调整; v 对学习内容中的若干关键词作适当调整对其意义 作更明确的阐释。 变化五: 设计思路 变化六: 四个领域名称 数与代数、空间与图形、统计与概率、实践与综合应用 数与代数、 图形与几何 、统计与概率、 综合与实践 变化七: 关于课程目标 总目标中 突出了 “培养学生创新精神和实践能力 ”的 改革方向和目标价值取向 。 课程目标提法上 除了 “四基 ”外,还有 “四个能力 ”: 培养 学生 发现问题、提出问题 、分析问题和解决问题能力 变化八: 关于 内容标准 增加 常见的数量关系 图形平移、画对称图形、平均数等上移第二学段 中位数、众数、可能性大小 上移第三学段 加强体会数据的随机性 变化九: 主要的关键词 数感 符号感 空间观念 统计观念 应用意识 推理能力 数感 符号意识 (调整) 空间观念 几何直观 (新增) 数据分析观念 (调整) 运算能力 (新增) 应用意识 推理能力 模型思想 (新增) 创新意识 (新增) 一、什么是 “ 直观 ” ? 三、小学数学教学中如何培养学生 的几何直观能力? 二、什么是 “ 几何直观 ” ? 【 直观 】 用感官直接接受的;直接观察的; 教具 教学。 现代汉语词典 2002年增补本,商务印书馆 【 克莱因 】 数学的直观就是对概念、证明的直接把握。 【 心理学家 】 直观是从感觉的具体的对象背后,发现抽象的、理想的能力 【 徐利治 】 直观就是借助于经验、观察、测试或类比联想,所产生的对事 物关系直接的感知与认识,而几何直观是借助于见到的或想到的几何图 形的形象关系产生对数量关系的直接感知 。 【 直观 】 一种能透过现象(或通过形象)看到本质、 一眼看出不同事物之间关联的洞察能力。 【 几何学 】 研究现实世界中物体的形状、 大小和位置关系的数学学科。 普通高中数学课程标准(实验) 2003年 【 徐利治 】 几何直观 是借助于见到的或想到的几何图形的形 象关系产生对数量关系的直接感知 。 【 弗莱登塔尔 】 几何直观 能 告诉我们什么是可能重要、可能 有意义和可接近的,并使我们在课题、概念与方法的荒漠 之中免于陷入歧途之苦。 课程设计已经走向多流派、多元化。而强调知识之间有 机地融合、 依赖几何直观的 “直观型 ”课程成为数学课程设计 的主流之一 。 我国新课程已经把 几何直观看作是贯穿高中数 学课程的线索之一 。 从函数的图象教学、三角函数的单位圆 、到导数的图象判断;从不等式的直观解释到线性规划的区 域刻画,此外,还有数系扩充中复数、概率统计中的直观图 以及向量的使用等等。几何课程设计更离不开几何直观。可 见,几何直观是高中数学教学中必不可少的有效工具。 因此,要充分利用几何直观来揭示研究对象的性质和关 系,使学生认识几何直观在数学学习中的意义和作用,同时 也学会数学的一种思考方式和学习方式。 几何直观能力主要包括: 空间想像能力 直观洞察能力 用 “图形语言 ”来思考问题能力 小学几何教学更多地关注的是实验几何、经验几何和直 观几何,让学生感受几何直观的作用,培养学生的几何直观 能力。 通过学生的拼一拼、折一折、量一量等操作之后,更多 的是要求学生相信自己的眼睛,经过不完全归纳之后,就可 以得出一些正确的结论。 ( “数 ”“形 ”结合思想) 低 高 空间想像能力 识图 画图 制作模型 观察物体 直观洞察能力 三点半 ,时针和分针的夹角是多少度 ? 两边之和大于第三边 用 “图形语言 ”来思考问题能力 两个长方形完全相同。第一个长方形的长减 少 3分米 ,宽不变;第二个长方形的宽减少 3分米 , 长不变。变化后两个长方形的面积怎样 ? 直 观 地 抽 象 教材的视角 教学的视角 1米 0 1米 0 0.1米 1米 0 0.9米 1米 0 1米 0 1米 0 1米 0 1.3米 01米 0 2米 0 1 2 0 1 2 3 自然数 整数 0 1 2 3 自然数 整数 小数 0.1 0.5 1.2 1.7 2.3 2.9 北师大版 三角形的 内角和 北师大版 青岛版 人教版 苏教版 浙教版 1.结论已知,学生无学习兴趣。 3.科学性与严密性的问题。 (直观背后的数学理性) 2.误差的干扰。 长方形内角和是 904=360 直角三角形的内角和是 3602=180 每个三角形都可以分成 两个直角三角形 每个三角形的内角和是 360-90-90 =180 旋转法 (帕斯卡) 台湾教材 直观是前提 抽象是本质 适度是关键 苏霍姆林斯基: 给教师的建议 一书 谈谈直观性问题 物体的直观形象本身,也可能把学生的注意力吸引住 一个相当长的时间,但是运用直观的手段绝不是为了整节 课地抓住学生的注意不放。在课堂上引进直观手段,倒是 为了在教学的某一个阶段上是儿童摆脱形象,在思维上过 渡到概括性的真理和规律上去。 乌申斯基说,儿童是 “用形式、声音、色彩和感觉 ”思 维的。直观性是一种发展观察力和发展思维的力量,它能 给认识带来一种情绪色彩。如果不形成发达的、丰富的情 绪记忆,就谈不上童年时期的完满的智力发展。 几何直观是数学中生动的、不断增长的 而且迷人的课题,在内容上、意义上和方法 上远远超出对几何图形本身的研究意义。相 信对几何直观的研究能够成为数学教育的核 心问题。 秦德生、孔凡哲 关于几何直观的思考 , 刊 中学数学教学参考 2005年第 10期 过去的 8年可以看成一个以 “ 课标 ” 为中心的 时代。与日夜盼望修订后的 数学课程标准 早日 发表并能真正做到尽善尽美相比,我们应当更加重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论