专业文献英语翻译复试_第1页
专业文献英语翻译复试_第2页
专业文献英语翻译复试_第3页
专业文献英语翻译复试_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、专业英语复试题-1Mesocrystals(介晶) are a new class of nanostructured solid materials, which are most often made of crystallographically(晶向)oriented nanoparticles. Structural features, properties, and possible applications of mesocrystals are summarized in this paper. Due to their unique structural features a

2、nd the resulting physical and physicochemical properties, mesocrystals are expected to play a significant role in improving the performance of materials in many applications. These are as diverse as heterogeneous photocatalysts, electrodes, optoelectronics, biomedical materials, hard templates, and

3、lightweight structural materials.In the past 6 years, more and more attention has been paid to mesocrystalline materials. An increasing number of papers have been published in the literature. Most of these focused on the characterization of structures and the investigation of formation mechanisms. T

4、he results indicate that the structure and formation mechanism of a mesocrystal are related to the shape of the nanoparticle, colloidal stabilization, and vectorial long-range interaction potentials. Surface interaction between the nanoparticles plays a critical role during the formation process of

5、a mesocrystal and may be responsible for the formation of external faces. The reason for the remarkably (almost perfectly in some cases) ordered alignment of nanoparticles is still poorly understood. Special emphasis has been placed on the different possible forces that may drive orientation and ass

6、embly between nanoparticles.专业英语复试题-2This work describes the real-time and quantitative analysis of calcium phosphate mineralization using a quartz crystal microbalance (QCM) sensor and synthetic DNA templates. In typical mineralization studies, static end-point analysis and surface characterization

7、 is common, while real-time quantitation focusing on time of nucleation, nucleation rates, time of crystal growth, and growth rates has not been widely explored. A better understanding of these parameters in coordination with structural analysis could aid in the assessment of template molecules and

8、could provide insight into biological and biomimetic mineralization. QCM is a dynamic, real-time analytical technique that can be generalized to a variety of minerals and can be integrated with widely used surface characterization techniques. As a template for mineralization, DNA has only recently b

9、een studied, although it has potential as an anionic polynucleotide with unique programmability and structural diversity in folding.专业英语复试题-3Living organisms are well known to exploit the material properties of amorphous and crystalline minerals when building a wide range of organicinorganic hybrid

10、materials for a variety of purposes, such as navigation, mechanical support, photonics, and protection of the soft parts of the body. The high level of control over the composition, structure, size, and morphology of biominerals results in materials of amazing complexity and fascinating properties t

11、hat strongly contrast with those of geological minerals and often surpass those of synthetic analogues.1 It is no surprise, then, that biominerals have intrigued scientists for many decades and served as a source of inspiration in the development of materials with highly controllable and specialized

12、 properties. In this Review we aim to provide an overview of the different nature-drawn strategies that have been applied to produce materials for biomedical, industrial, and technological applications. We will first illustrate the diversity of biogenic minerals and their overall properties, and des

13、cribe the most general approaches used by organisms to produce such materials. We will then discuss several approaches inspired by the mechanisms of biomineralization in nature, and how they can be applied to the synthesis of functional and advanced materials such as bone implants, nanowires, semico

14、nductors, and nanostructured silica. In the final section, we will discuss methods that are necessary to study and visualize the formation of synthetic materials in situ so as to better understand, control, and optimize their synthesis and properties. 专业英语复试题-4Nanoparticles with dipole or magnetic m

15、oments will create local dipole/magnetic fields and can mutually attract each other in crystallographic register. The same is true for anisotropic particle polarization, where particle surfaces with equal polarizability attract each other by directed van der Waals forces. This concept requires the n

16、ucleation of a large number of nanoparticles of about the same size with the requirement of anisotropy along at least one crystallographic axis. This anisotropy can also be inherent to the crystal system as was observed for the case of amino acid crystals or might be induced by selective polyelectrolyte adsorption to expose highly charged faces simultaneously with their oppositely charged counterface. Amino acids are an ideal system for the study of mesocrystal formation since simple pH variation can vary the crys

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论