![线性代数教学资料—chapter4_第1页](http://file1.renrendoc.com/fileroot_temp2/2020-10/10/7c0743e8-3b4a-482a-a4a1-971b0ea16bc4/7c0743e8-3b4a-482a-a4a1-971b0ea16bc41.gif)
![线性代数教学资料—chapter4_第2页](http://file1.renrendoc.com/fileroot_temp2/2020-10/10/7c0743e8-3b4a-482a-a4a1-971b0ea16bc4/7c0743e8-3b4a-482a-a4a1-971b0ea16bc42.gif)
![线性代数教学资料—chapter4_第3页](http://file1.renrendoc.com/fileroot_temp2/2020-10/10/7c0743e8-3b4a-482a-a4a1-971b0ea16bc4/7c0743e8-3b4a-482a-a4a1-971b0ea16bc43.gif)
![线性代数教学资料—chapter4_第4页](http://file1.renrendoc.com/fileroot_temp2/2020-10/10/7c0743e8-3b4a-482a-a4a1-971b0ea16bc4/7c0743e8-3b4a-482a-a4a1-971b0ea16bc44.gif)
![线性代数教学资料—chapter4_第5页](http://file1.renrendoc.com/fileroot_temp2/2020-10/10/7c0743e8-3b4a-482a-a4a1-971b0ea16bc4/7c0743e8-3b4a-482a-a4a1-971b0ea16bc45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4 THE EIGENVALUE PROBLEM,Overview,In section 4.4 we move on to the general case, the eigenvalue problem for (nn) matrices. The general case requires several results from determinant theory, and these are summarized in section 4.2.,The eigenvalue problem is of great practical importance in mathematic
2、s and applications.,In section 4.1 we introduce the eigenvalue problem for the special case of (22) matrices; this special case can be handled using ideas developed in Chapter 1.,Core sections,The eigenvalue problem for (22) matrices Eigenvalues and the characteristic polynomial Eigenvectors and eig
3、enspaces Similarity transformations and diagonalization,4.1 The eigenvalue problem for (22) matrices,All scalars,Nonzero solution/ Infinitely many solution,1. The eigenvalue problem,The Geometric interpretation of Eigenvalue and eigenvector,The calculation of Eigenvalue and eigenvector,Homogeneous S
4、ystems,Eigenvalue and eigenvectors for (22) matrices,Example: Find all eigenvalues and eigenvectors of A, where,4.2 Determinants and the eigenvalue problem (omit),4.3 Elementary operations and determinants (omit),4.4 Eigenvalues and the characteristic polynomial,Example: Use the singularity test to
5、determine the eigenvalues of the matrix A, where,In this section we focus on part 1, finding the eigenvalues.,The characteristic polynomial,characteristic polynomial,characteristic equation,(1) an (nn) matrix can have no more than n distinct eigenvalues.,(2) an (nn) matrix always has at least one ei
6、genvalue.,Special Results,4.5 Eigenvectors and Eigenspaces,Eigenspaces and Geometric Multiplicity,Example Determine the algebraic and geometric multiplicities for the eigenvalues of A,Proof:,Corollary: Let A be an (nn) matrix. If A has n distinct eigenvalues, then A has a set of n linearly independe
7、nt eigenvectors.,4.7 Similarity Transformations And Diagonalization,In Chapter 1, we saw that two linear systems of equations have the same solution if their augmented matrices are row equivalent. In this chapter, we are interested in identifying classes of matrices that have the same eigenvalues.,D
8、efinition: The (nn) matrices A and B are said to be similar (denoted AB) if there is a nonsingular (nn) matrix S such that B=S-1AS.,Similarity,Theorem: If A and B are similar (nn) matrices, then A and B have the same eigenvalues. Moreover, these eigenvalues have the same algebraic multiplicity.,Note
9、: not generally have the same eigenvectors.,D is a diagonal matrix.,Diagonalization,Theorem: An (nn) matrix A is diagonalizable if and only if A possesses a set of n linearly independent eigenvectors.,Theorem: Let A be an (nn) matrix with n distinct eigenvalues. Then A is diagonalizable.,Whenever an
10、 (nn) matrix A is similar to a diagonal matrix, we say that A is diagonalizable.,Proof:,Proof:,Example Show that A is diagonalizable ,where,Orthogonal Matrices,A remarkable and useful fact about symmetric matrices is that they are always diagonalizable. Moreover, the diagonalization of a symmetric m
11、atrix A can be accomplished with a special type of matrix know as an orthogonal matrix.,Definition: A real (nn) matrix Q is called an orthogonal matrix if Q is invertible and Q-1=QT.,Theorem: Let Q be an (nn) orthogonal matrix. If X is in Rn, then |Q X |=| X |. If X and Y are in Rn , then (Q X)T(QY)
12、= X TY. det(Q)=1.,Diagonalizaiton of Symmetric Matrices,We conclude this section by showing that every symmetric matrix can be diagonalized by an orthogonal matrix.,Theorem: Let A be an (nn) real symmetric matrix, then the eigenvalues of A are real. (P319),Corollary: Let A be a real (nn) symmetric matri
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古诗词艺术歌曲同词异曲版本的比较研究与演唱诠释
- LINC00487和艾拉莫德调控原发性干燥综合征B细胞功能的研究
- 2025至2030年重垢洗剂项目投资价值分析报告
- 沉默lncRNA MALAT1介导FOXO1通路影响胶质瘤血管生成拟态的研究
- 现代城市公园的适老性评价与改造
- 2025至2030年电力测试仪项目投资价值分析报告
- 2025至2030年油性粘袋粘合胶项目投资价值分析报告
- 2025至2030年松树皮项目投资价值分析报告
- 江苏省花样游泳青少年运动员培养现状调查与研究
- 花生玉米间作对花生根际土壤微生物及有机碳封存的影响
- 2024-2030年中国车载冰箱行业市场发展调研及投资战略分析报告
- 数字全息显微成像的理论和实验研究
- 第16讲 电气绝缘节工作原理讲解
- 《行政伦理学教程(第四版)》课件 第3、4章 行政理性与行政价值、行政伦理规范
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 2024-2029年中国电力工程监理行业市场现状分析及竞争格局与投资发展研究报告
- 漂流项目规划设计方案
- (高清版)TDT 1048-2016 耕作层土壤剥离利用技术规范
- 市场调研与咨询行业的市场调研方法创新培训
- 29.4常见肿瘤标志物讲解
- 学生奖励兑换券模板
评论
0/150
提交评论