一维和二维关联无序安德森模型_第1页
一维和二维关联无序安德森模型_第2页
一维和二维关联无序安德森模型_第3页
一维和二维关联无序安德森模型_第4页
一维和二维关联无序安德森模型_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.,One- and two-dimensional Anderson model with long- range correlated-disorder 一维和二维关联无序安德森模型,.,One- and two-dimensional Anderson model with long- range correlated-disorder Anderson model-Introduction Entanglement in 1D 2D Entanglement 2D conductance 2D transmission 2D magnetoconductance,.,Anderson

2、model-Introduction What is a disordered system? No long-range translational order Types of disorder,(a)crystal,(b) Component disorder,(c) position disorder,(d) topological disorder,.,diagonal disorder off-diagonal disorder complete disorder Localization prediction:an electron, when placed in a stron

3、g disordered lattice, will be immobile 1 P.W.Anderson, Phys.Rev.109 ,1492(1958).,Anderson model-Introduction By P.W.Anderson in 19581,.,Anderson model-Introduction In 1983 and 1984 John extended the localization concept successfully to the classical waves, such as elastic wave and optical wave 1. Fo

4、llowing the previous experimental work ,Tal Schwartz et al. realized the Anderson localization with disordered two-dimensional photonic lattices2. 1John S,Sompolinsky H and Stephen M J 1983 Phys.Rev.B27 5592; John S and Stephen M J 1983 28 6358; John S 1984 Phys.Rev.Lett. 53 2169 2Schwartz Tal, Bart

5、al Guy, Fishman Shmuel and Segev Mordechai 2007 Nature 446 52,.,Anderson model-open problems Abrahans et al.s scaling theory for localization in 19791( 3000 citations ,one of the most important papers in condensed matter physics) Predictions(1)no metal-insulator transition in 2d disordered systems S

6、upported by experiments in early 1980s. (2) (dephasing time ) Results of J.J.Lin in 19872,1 E.Abrahans,P.W.Anderson, D.C.Licciardello and T.V. Ramakrisbnan, Phys.Rev.Lett. 42 ,673(1979) 2 J.J. Lin and N. Giorano, Phys. Rev. B 35, 1071 (1987); J.J. Lin and J.P. Bird, J. Phys.: Condes. Matter 14, R501

7、 (2002).,.,Results of J.J.Lin in 19872,dephasing time,.,Work of Hui Xu et al.on systems with correlated disorder : 刘小良,徐慧,等,物理学报,55(5),2493(2006); 刘小良,徐慧,等,物理学报,55(6),2949(2006); 徐慧,等,物理学报, 56(2),1208(2007); 徐慧,等,物理学报, 56(3),1643(2007); 马松山,徐慧,等,物理学报,56(5),5394(2007); 马松山,徐慧,等,物理学报, 56(9),5394(2007)

8、。,.,Anderson model-new points of view 1。Correlated disorder Correlation and disorder are two of the most important concepts in solid state physics Power-law correlated disorder Gaussian correlated disorder 2。Entanglement1:an index for metal-insulator,localization-delocalization transition ”entanglem

9、ent is a kind of unlocal correlation”(MPLB19,517,2005). Entanglement of spin wave functions:four states in one site:0 spin; 1up; 1down; 1 up and 1 down Entanglement of spatial wave functions (spinless particle) :two states:occupied or unoccupied Measures of entanglement:von Newmann entropy and concu

10、rrence 1Haibin Li and Xiaoguang Wang, Mod. Phys. Lett. B19,517(2005);Junpeng Cao, Gang Xiong, Yupeng Wang, X. R. Wang, Int. J.Quant. Inform.4 , 705(2006). Hefeng Wang and Sabre Kais, Int. J.Quant. Inform.4 , 827(2006).,.,Anderson model- new points of view 3.new applications (1)quantum chaos (2)elect

11、ron transport in DNA chains The importance of the problem of the electron transport in DNA1 (3)pentacene2(并五苯) Molecular electronics Organic field-effect-transistors pentacene:layered structure, 2D Anderson system 1R. G. Endres, D. L. Cox and R. R. P. Singh,Rev.Mod.Phys.76 ,195(2004); Stephan Roche,

12、 Phys.Rev.Lett. 91 ,108101(2003). 2 M.Unge and S.Stafstrom, Synthetic Metals,139(2003)239-244;J.Cornil,J.Ph.Calbert and J.L.Bredas, J.Am.Chem.Soc.,123,1520-1521(2001).,DNA structure,.,Entanglement in one-dimensional Anderson model with long-range correlated disorder one-dimensional nearest-neighbor

13、tight-binding model Concurrence:,von Neumann entropy,.,Left. The average concurrence of the Anderson model with power-law correlation as the function of disorder degree W and for various .A band structure is demonstrated. Right. The average concurrence of the Anderson model with power-law correlatio

14、n for =3.0 and at the bigger W range. A jumping from the upper band to the lower band is shown,.,2D entanglement Method:taking the 2D lattice as 1D chain,1 Longyan Gong and Peiqing Tong,Phys.Rev.E 74 (2006) 056103.;Phys.Rev.A 71 ,042333(2005).,Quantum small world network in 1 square lattice,.,Left.

15、The average concurrence of the Anderson model with power-law correlation as the function of disorder degree W and for various . A band structure is demonstrated. Right. The average von Newmann entropy of the Anderson model with power-law correlation as the function of disorder degree W and for vario

16、us . A band structure is demonstrated.,.,Lonczos method,.,Entanglement in DNA chain guanine (G), adenine (A), cytosine(C), thymine (T) Qusiperiodical model R-S model to generate the qusiperiodical sequence with four elements (G,C,A,T) .The inflation(substitutions) rule is GGC;CGA;ATC;TTA. Starting w

17、ith G (the first generation), the first several generations are G,GC,GCGA,GCGAGCTC, GCGAGCTC GCGATAGA .Let Fi the element (site) number of the R-S sequence in the ith generation, we have Fi+1=2Fi for i=1 . So the site number of the first several generations are 1,2,4,8,16, , and for the12th generati

18、on , the site number is 2048.,.,The average concurrence of the Anderson model for the DNA chain as the function of site number. The results are compared with the uncorrelated uniform distribution case.,.,Spin Entanglement of non-interacting multiple particles:Greens function method,Finite temperatur

19、e two body Greens function,One particle density matrix and One body Greens function,Two particle density matrix,where,HF approx.,.,If,and,where,Generalized Werner State,then,.,Conductance and magnetoconductance of the Anderson model with long-range correlated disorder,(1)Static conductance of the tw

20、o-dimensional quantum dots with long-range correlated disorder Idea:the distribution function of the conductance in the localized regime 1d:clear Gaussian 2d: unclear Method to calculating the conductance :Greens function and Kubo formula,.,Fig.1,Fig.2a,Fig.2b,.,Fig.1 Conductance as the function of Fermi energy for the systems with power-law correlated disorder (W=1.5 ) for various exponent .The results are compa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论