数学人教版八年级上册最短路径.ppt_第1页
数学人教版八年级上册最短路径.ppt_第2页
数学人教版八年级上册最短路径.ppt_第3页
数学人教版八年级上册最短路径.ppt_第4页
数学人教版八年级上册最短路径.ppt_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、八年级 上册,13.4 课题学习 最短路径问题,翰文学校 张荣华,如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?,两点之间线段最短,复习引入,如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?,P,所以泵站建在点P可使输气管线最短,问题1相传,古希腊有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然 后到B 地到河边什么地方饮马可使他所走的路线全程 最短?,探索新知,你能将这个问题抽象为数学问题吗?,探索新知,追问1这

2、是一个实际问题,你打算首先做什么?,将A,B 两地抽象为两个点,将河l 抽象为一条直 线,探索新知,追问2对于问题1,如何 将点B“移”到l 的另一侧B 处,满足直线l 上的任意一点 C,都保持CB 与CB的长度 相等?,探索新知,问题1 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?,追问2你能利用轴对称的 有关知识,找到上问中符合条 件的点B吗?,探索新知,作法: (1)作点B 关于直线l 的对称 点B; (2)连接AB,与直线l 相交 于点C 则点C 即为所求,探索新知,探索新知,追问3你能用所学的知识证明AC +BC最

3、短吗?,证明:如图,在直线l 上任取一点C(与点C 不 重合),连接AC,BC,BC 由轴对称的性质知, BC =BC,BC=BC AC +BC = AC +BC = AB, AC+BC = AC+BC,探索新知,追问3你能用所学的知识证明AC +BC最短吗?,在ABC中, ABAC+BC, AC +BCAC+BC 即AC +BC 最短,问题2(造桥选址问题) 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。),M,N,探索新知,A,B,M,N,a,b,a,证明:, , MN即所求,课堂小结:,(1)本节课研究问题的基本过程是什么?

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论