版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12.2三角形全等的判定(二),三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,在ABC和 DEF中, ABC DEF(SSS),用符号语言表达为:,三角形全等判定方法1,三步走:,准备条件,摆齐条件,得结论,注重书写格式,除了SSS外,还有其他情况吗?继续探索三角形全等的条件.,思考,(2) 三条边,(1) 三个角,(3) 两边一角,(4) 两角一边,当两个三角形满足六个条件中的三个时,有四种情况:,SSS,不能!,?,继续探讨三角形全等的条件:,两边一角,思考:已知一个三角形的两条边和一个角,那么这两条边 与这一个角的位置上有几种可能性呢?,图一,图二,在图一中, A,
2、是AB和AC的夹角,,符合图一的条件,它可称为“两边夹角”。,符合图二的条件, 通常 说成“两边和其中一边的对角”,已知ABC,画一个ABC使A B =AB,A C =A C , A =A。,结论:两边及夹角对应相等的两个三角形全等,?,思考: A B C 与 ABC 全等吗?如何验正?,画法: 1.画 DA E= A;,2.在射线A D上截取A B =AB,在射线A E上截取A C =AC;,3. 连接B C.,A,C,B,A,E,D,C,B,思考: 这两个三角形全等是满足哪三个条件?,探索边角边,三角形全等判定方法2,用符号语言表达为:,在ABC与DEF中,ABCDEF(SAS),两边和它
3、们的夹角对应相等的两个三角形全等。(可以简写成“边角边”或“SAS”),F,E,D,C,B,A,1.在下列图中找出全等三角形,练习一,如图,有一池塘,要测池塘两端A、B的距离,可在平地上取一个可直接到达A和B的点C,连结AC并延长至D使CD=CA,连结BC并延长至E使CE=CB,连结ED,那么量出DE的长,就是A、B的距离,为什么?,B,A,D,E,证明:在ABC和DEC中,,AC=DC(已知),ACB=DCE(对顶角相等),BC=EC(已知),ABCDEC(SAS),AB=DE,(全等三角形的对应边相等),分析:已知两边(相等),找第三边(SSS),找夹角 (SAS),解决问题,探索边边角,
4、两边及其中一边的对角对应相等的两个三角形全等吗?,已知:AC=10cm,BC=8cm, A=45 .,ABC的形状与大小是唯一确定的吗?,探索边边角,SSA不存在,显然: ABC与ABC不全等,A,B,D,A,B,C,SSA不能判定全等,两边及一角对应相等的两个三角形全等吗?,两边及夹角对应相等的两个三角形全等(SAS);,两边及其中一边的的对角对应相等的两个三角形不一定全等, 现在你知道哪些三角形全等的判定方法?,SSS,SAS,例. 如图,AC=BD,CAB= DBA,你能判断BC=AD吗?说明理由。,证明:在ABC与BAD中,AC=BD CAB=DBA AB=BA,ABCBAD(SAS)
5、,(已知),(已知),(公共边),BC=AD (全等三角形的对应边相等),巩固练习,1.如图,点E,F在BC上,BE=CF,AB=DC,B=C 求证:A=D,证明:, BE=CF,即BF=CE,在ABF与DCE中,AB=DC,B=C,BF=CE, ABFDCE, A=D,(已知),(已知),(已知),(已证),(SAS), BE+EF=CF+EF,(全等三角形的对应角相等),因为全等三角形的对应角相等,对应边相等,所以,证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明两个三角形全等来解决。,归纳,C,在下列推理中填写需要补充 的条件,使结论成立: (1)如图,在AOB和DOC中,A
6、O=DO(已知) _=_( ) BO=CO(已知) AOBDOC( ), AOB, DOC,对顶角相等,SAS,练习一,(2).如图,在AEC和ADB中,已知AE=AD,AC=AB,请说明AEC ADB的理由。,_=_(已知) A= A( 公共角) _=_(已知) AECADB( ),AE,AD,AC,AB,SAS,解:在AEC和ADB中,1.若AB=AC,则添加什么条件可得ABD ACD?,ABD ACD,AB=AC,BAD= CAD,S,A,S,练习二,AD=AD,BD=CD,S,2.如图,要证ACB ADB ,至少选用哪些条件可,A,B,C,D,ACB ADB,S,A,S,证得ACB ADB,AB=AB,CAB= DAB,AC=AD,S,BC=BD,3.如图:己知ADBC,AE=CF,AD=BC,E、都在直线上,试说明。,练习三,例.如图,已知AB=DE,AC=DF,要说明ABCDEF, 还需增加一个什么条件?,同步练习,2.如图,已知OA=OB,应填什么条件就得到: AOC BOD(只允许添加一个条件),开放题:,已知:如图,AB=AC,AD=AE ,1 =2 。试说明:ABD ACE 。,拓展提高,三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,在ABC和 DEF中, ABC DEF(SSS),用符号语言表达为:,三角形全等判定方法1,三角形全等判定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 古诗词诵读《李凭箜篌引》-高二语文大单元教学同步备课(统编版选择性必修中册)
- 《温暖的毛衣》少儿美术教育绘画课件创意教程教案
- 人教版位置课件
- 二年级上册数学每日计算小纸条1-6
- 西京学院《国画》2021-2022学年第一学期期末试卷
- 西华师范大学《中国政治制度史》2022-2023学年第一学期期末试卷
- 高考地理一轮复习第八章人口第一节人口分布与人口容量课件
- 西华师范大学《土壤污染防治技术》2022-2023学年第一学期期末试卷
- 职业技术学院现代物流管理专业人才培养方案
- 西华师范大学《机器人创新》2023-2024学年第一学期期末试卷
- 儿科临床-疳证的诊疗
- 初中英语学习方法指导全课件
- 初二年级家长会完整课件
- 二手木托盘回收合同范本
- BOPET薄膜的生产工艺和应用
- 互联网医院医疗合作共建协议书
- 垃圾分类与资源化处置建设项目计划书
- 环己烯水合制备环己醇催化反应过程的研究
- 影响中药制剂质量的因素
- 保险基础知识题库解析
- 公路工程施工质量监理工作手册
评论
0/150
提交评论