




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、33.2简单的线性规划问题(二)学习目标1.了解实际线性规划中的整数解求法.2.会求一些简单的非线性函数的最值知识点一非线性约束条件思考类比探究二元一次不等式表示平面区域的方法,画出约束条件(xa)2(yb)2r2的可行域答案梳理非线性约束条件的概念约束条件不是二元一次不等式,这样的约束条件称为非线性约束条件知识点二非线性目标函数思考在问题“若x、y满足求z的最大值”中,你能仿照目标函数zaxby的几何意义来解释z的几何意义吗?答案z的几何意义是点(x,y)与点(1,1)连线的斜率梳理下表是一些常见的非线性目标函数.目标函数目标函数变形几何意义最优解求法zaxby (ab0)yx在y轴上的截距
2、是平移直线yx,使在y轴上的截距最大(或最小)(xa)2(yb)2令m(xa)2(yb)2,则目标函数为()2点(x,y)与点(a,b)距离的平方改变圆(xa)2(yb)2r2的半径,寻求可行域最先(或最后)与圆的交点点(x,y)与定点(a,b)连线的斜率绕定点(a,b)旋转直线,寻求与可行域最先(或最后)相交时的直线斜率|axbyc|(a2b20)点(x,y)到直线axbyc0距离的倍平移直线axbyc0,寻求与可行域最先(或最后)相交时的交点类型一生活实际中的线性规划问题例1某工厂制造甲、乙两种家电产品,其中每件甲种家电需要在电器方面加工6小时,装配加工1小时,每件甲种家电的利润为200元
3、;每件乙种家电需要在外壳配件方面加工5小时,在电器方面加工2小时,装配加工1小时,每件乙种家电的利润为100元已知该工厂可用于外壳配件方面加工的能力为每天15小时,可用于电器方面加工的能力为每天24小时,可用于装配加工的能力为每天5小时问该工厂每天制造两种家电各几件,可使获取的利润最大?(每天制造的家电件数为整数)解设该工厂每天制造甲、乙两种家电分别为x件、y件,获取的利润为z百元,则z2xy(百元)作出可行域如图阴影部分中的整点:由图可得O(0,0),A(0,3),B(2,3),C,D(4,0)平移直线y2xz,又x,yN,所以当直线过点(3,2)或(4,0)时,z有最大值所以工厂每天制造甲
4、种家电3件,乙种家电2件或仅制造甲种家电4件,可获利最大反思与感悟在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等),而直接根据约束条件得到的不一定是整数解,可以运用列举法验证求最优整数解,或者运用平移直线求最优整数解最优整数解有时并非只有一个,应具体情况具体分析跟踪训练1预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才是最好的选择?解设桌子、椅子分别买x张、y把,目标函数zxy,把所给的条件表示成不等式组,即约束条件为由解得所以A点的坐标为.由解得所以B点坐标为(25
5、,)所以满足条件的可行域是以A,B,O为顶点的三角形区域(含边界)(如图),由图形可知,目标函数zxy在可行域内经过点B时取得最大值,但注意到xN,yN,故取故买桌子25张,椅子37把是最好的选择类型二非线性目标函数的最值问题命题角度1斜率型目标函数例2已知实数x,y满足约束条件试求z的最大值和最小值解作出不等式组表示的平面区域如图阴影部分所示,由于z,故z的几何意义是点(x,y)与点M(1,1)连线的斜率,因此的最值是点(x,y)与点M(1,1)连线的斜率的最值,由图可知,直线MB的斜率最大,直线MC的斜率最小,又B(0,2),C(1,0),zmaxkMB3,zminkMC.z的最大值为3,
6、最小值为.引申探究1把目标函数改为z,求z的取值范围解z,其中k的几何意义为点(x,y)与点N连线的斜率由图易知,kNCkkNB,即k,k7,z的取值范围是,72把目标函数改为z,求z的取值范围解z2.设k,仿例2解得k1.z,3命题角度2两点间距离型目标函数例3已知x,y满足约束条件试求zx2y2的最大值和最小值解zx2y2表示可行域内的点到原点的距离的平方,结合图形(例2图)知,原点到点A的距离最大,原点到直线BC的距离最小故zmax|OA|213,zmin22.反思与感悟(1)对于形如的目标函数,可变形为定点到可行域上的动点连线斜率问题(2)当斜率k、两点间的距离、点到直线的距离与可行域
7、相结合求最值时,注意数形结合思想方法的灵活运用跟踪训练2变量x、y满足约束条件(1)设z,求z的最小值;(2)设zx2y2,求z的取值范围;(3)设zx2y26x4y13,求z的取值范围解由约束条件作出可行域如图阴影部分(含边界)所示由解得A;由解得C(1,1);由解得B(5,2)(1)因为z,所以z的值即是可行域中的点与原点O连线的斜率观察图形可知zminkOB.(2)zx2y2的几何意义是可行域上的点到原点O的距离的平方结合图形可知,可行域上的点到原点的距离中,dmin|OC|,dmax|OB|,即2z29.(3)zx2y26x4y13(x3)2(y2)2的几何意义是可行域上的点到点(3,
8、2)的距离的平方结合图形可知,可行域上的点到点(3,2)的距离中,dmin1(3)4,dmax8.所以16z64.1某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有()A5种 B6种 C7种 D8种答案C解析设购买软件x片,磁盘y盒则画出线性约束条件表示的平面区域,如图阴影部分(含边界)所示落在阴影部分(含边界)区域的整点有(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2)共7个整点即有7种选购方式2已知点P(x,y)的坐标满足约束条件则x2y2的最大值为()A.
9、 B8 C16 D10答案D解析画出不等式组对应的可行域如图所示,易得A(1,1),|OA|,B(2,2),|OB|2,C(1,3),|OC|.(x2y2)max|OC|2()210.3若x、y满足约束条件则z的最大值是_答案3解析作出不等式组表示的平面区域如图中阴影部分所示(包括边界)z可看作可行域上的点(x,y)与定点B(1,1)连线的斜率由图可知z的最大值为kAB3.4已知实数x,y满足约束条件则zx2y2的最小值为_答案解析实数x,y满足的可行域如图中阴影部分(含边界)所示,则z的最小值为原点到直线AB的距离的平方,故zmin2.1画图对解决线性规划问题至关重要,关键步骤基本上是在图上
10、完成的,所以作图应尽可能准确,图上操作尽可能规范2在实际应用问题中,有些最优解往往需要整数解(比如人数、车辆数等)应结合可行域与目标函数微调3对于非线性目标函数,应准确翻译其几何意义,如x2y2是点(x,y)到点(0,0)的距离的平方,而非距离40分钟课时作业一、选择题1在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇现有4辆甲型货车和8辆乙型货车可供使用每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台若每辆车至多只运一次,则该厂所花的最少运输费用为()A2 000元 B2 200元C2 400元 D2 800元答案B解析设需使用甲型货车
11、x辆,乙型货车y辆,运输费用z元,根据题意,得线性约束条件求线性目标函数z400x300y的最小值,可行域如图阴影部分(含边界),解得当时,z有最小值,且zmin2 200(元)2某公司有60万元资金,计划投资甲、乙两个项目,按要求对项目甲的投资不小于对项目乙投资的,且对每个项目的投资不能低于5万元,对项目甲每投资1万元可获得0.4万元的利润,对项目乙每投资1万元可获得0.6万元的利润,该公司正确规划投资后,在这两个项目上共可获得的最大利润为()A36万元 B31.2万元C30.4万元 D24万元答案B解析设投资甲项目x万元,投资乙项目y万元,可获得利润为z万元,则z0.4x0.6y.可行域如
12、图阴影部分(含边界),由图象知,目标函数z0.4x0.6y在A点取得最大值由得A(24,36),ymax0.4240.63631.2(万元)3某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品,甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为()A甲车间加工原料10箱,乙车间加工原料60箱B甲车间加工原料15箱,乙车间加工原料55箱C甲车间加
13、工原料18箱,乙车间加工原料50箱D甲车间加工原料40箱,乙车间加工原料30箱答案B解析设甲车间加工原料x箱,乙车间加工原料y箱,由题意可知甲、乙两车间每天总获利为z280x200y.画出可行域如图阴影部分(含边界)所示点M(15,55)为直线xy70和直线10x6y480的交点,由图象知z在点M(15,55)处取得最大值4已知O是坐标原点,点A(1,1),若点M(x,y)为平面区域上的一个动点,则的取值范围是()A1,0 B0,1C0,2 D1,2答案C解析作出可行域,如图所示,因为xy.所以设zxy,作l0:xy0,易知过点P(1,1)时,z有最小值,zmin110;过点Q(0,2)时,z
14、有最大值,zmax022,所以的取值范围是0,25设x,y满足约束条件则的最大值是()A5 B6 C8 D10答案D解析画出可行域如图阴影部分(含边界)所示,的几何意义是点M(1,1)与可行域内的点P(x,y)连线的斜率,当点P移动到点N(0,4)时,斜率最大,最大值为5,()max2510.故选D.6某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和7辆载重量为6吨的乙型卡车某天需送往A地至少72吨的货物,派用的每辆车需满载且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元该公司合理计划当天派用
15、两类卡车的车辆数,可得最大利润z等于()A4 650元 B4 700元C4 900元 D5 000元答案C解析设当天派用甲型卡车x辆,乙型卡车y辆,由题意得设每天的利润为z元,则z450x350y.画出可行域如图阴影部分(含边界)所示z450x350y50(9x7y),由图可知直线9x7y0经过点A时,z取得最大值又由得即A(7,5)当x7,y5时,z取到最大值,zmax450735054 900(元)二、填空题7某公司招收男职员x名,女职员y名,x和y需满足约束条件则z10x10y的最大值是_答案90解析先画出满足约束条件的可行域,如图中阴影部分(含边界)所示,由解得但xN*,yN*,结合图
16、知当x5,y4时,zmax90.8实数x,y满足不等式组则的取值范围是_答案解析如图,画出满足不等式组的解(x,y)构成的可行域ABO,求得B(2,2),根据目标函数的几何意义是可行域上一点(x,y)与点(1,1)连线的斜率,可求得目标函数的最小值为1,最大值为.故的取值范围是.9已知则x2y2的最小值是_答案5解析令zx2y2,画出可行域,如图阴影部分(含边界)所示,令d,即可行域中的点到原点的距离,由图得dmin,zmind25.三、解答题10A,B两仓库各有麻袋50万个,30万个,现需调运到甲地40万个,乙地20万个,已知从A仓库调运到甲、乙两地的运费分别为120元/万个,180元/万个
17、,从B仓库调运到甲、乙两地的运费分别为100元/万个,150元/万个,怎样安排调运,能使总运费最少?最少总运费为多少?解设从A仓库调运x万个到甲地,y万个到乙地,则从B仓库调运(40x)万个到甲地,(20y)万个到乙地,总运费记为z元,则有z120x180y100(40x)150(20y),即z20x30y7 000,作出可行域及直线l0:20x30y0(如图),经平移知直线经可行域上点M(30,0)时,z有最小值,即x30,y0时,z有最小值,zmin20303007 0007 600(元),即从A仓库调运30万个到甲地,从B仓库调运10万个到甲地,调运20万个到乙地时,总运费最小,其最小值为7 600元11某工厂要制造A种电子装置45台,B种电子装置55台,需用薄钢板给每台装置配一个外壳,已知薄钢板的面积有两种规格:甲种薄钢板每张面积2 m2,可做A、B的外壳分别为3个和5个,乙种薄钢板每张面积3 m2,可做A、B的外壳均为6个,求两种薄钢板各用多少张,才能使总的面积最小解设用甲种薄钢板x张,乙种薄钢板y张,则可做A种产品外壳(3x6y)个,B种产品外壳(5x6y)个,由题意可得所有的薄钢板的总面积是z2x3y.可行域为如图所示的阴影部分(含边界),其中l1:3x6y45;l2:5x6y55,l1与l2的交点为A(5,5),目标函数z2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五股票与股权分配协议
- 办理协议离婚经过的程序
- 业务员协议书
- 二零二五土地征收协议
- 企业高龄用工劳务协议书
- 2025年非金属矿物制品合作协议书
- 2025年多功能轻质复合板合作协议书
- 施工分包合同
- 价格补充合同样本
- 小学美术教案全套
- 【工程项目施工阶段造价的控制与管理8100字(论文)】
- XX学校推广应用“国家中小学智慧教育平台”工作实施方案
- 非遗文化创意产品设计 课件全套 第1-5章 概述- 非遗文创产品设计案例解析
- 法律尽职调查所需资料清单
- 幼儿园中班安全教育活动《紧急电话的用途》
- 118种元素原子结构示意图
- 英语四线三格Word版
- 幼儿园行政工作制度
- 广州新华学院
- 部编版七年级下册道法期中试卷1
- 知识图谱-课件
评论
0/150
提交评论