高中数学 第一章 常用逻辑用语 1.3.1 推出与充分条件、必要条件学案 新人教B版选修2-1_第1页
高中数学 第一章 常用逻辑用语 1.3.1 推出与充分条件、必要条件学案 新人教B版选修2-1_第2页
高中数学 第一章 常用逻辑用语 1.3.1 推出与充分条件、必要条件学案 新人教B版选修2-1_第3页
高中数学 第一章 常用逻辑用语 1.3.1 推出与充分条件、必要条件学案 新人教B版选修2-1_第4页
高中数学 第一章 常用逻辑用语 1.3.1 推出与充分条件、必要条件学案 新人教B版选修2-1_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.3.1推出与充分条件、必要条件1结合具体实例,理解充分条件、必要条件的意义(重点)2会求(判定)某些简单命题的条件关系(重点)3通过对充分条件、必要条件概念的理解和运用,培养分析、判断和归纳逻辑思维的能力(难点)基础初探教材整理1充分条件与必要条件阅读教材P19P20第2自然段,完成下列问题充分条件与必要条件命题真假“若p,则q”是真命题“若p,则q”是假命题推出关系p_qp_q条件关系p是q的_条件q是p的_条件p不是q的_条件q不是p的_条件【答案】充分必要充分必要判断(正确的打“”,错误的打“”)(1)q是p的必要条件时,p是q的充分条件()(2)q不是p的必要条件时,“pq”成立(

2、)(3)若q是p的必要条件,则q成立,p也成立()【答案】(1)(2)(3)教材整理2充要条件阅读教材P20第3自然段P21,完成下列问题充要条件的概念一般地,如果pq,且qp,就记作pq.此时,我们说,p是q的_条件,简称_条件概括地说,如果pq,那么p与q_条件【答案】充分且必要充要互为充要在平面直角坐标系xOy中,直线x(m1)y2m与直线mx2y8互相垂直的充要条件是m_. 【导学号:】【解析】x(m1)y2m与mx2y8互相垂直1m(m1)20m.【答案】质疑手记预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_解惑:_疑问2:_解惑:_疑问3:_解惑:_小组合作型充

3、分条件、必要条件、充要条件的判断下列各题中,p是q的什么条件?(在“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中选出一种作答)(1)p:ABA,q:UBUA;(2)在ABC中,p:sin Asin B,q:tan Atan B;(3)p:1,q:yf(x)为偶函数【精彩点拨】(1)画出Venn图(如图131)可得图131(2)在ABC中,sin Asin BAB,但是当A为钝角时,tan Asin BABtan Atan B,tan Atan Bsin AsinB故p是q的既不充分也不必要条件(3)1f(x)f(x)yf(x)为偶函数,但当f(x)0时,qp.故p是

4、q的充分不必要条件1判断p是q的什么条件,主要判断pq,及qp两命题的正确性,若pq真,则p是q成立的充分条件;若qp真,则p是q成立的必要条件要否定p与q不能相互推出时,可以举出一个反例进行否定2充分条件与必要条件的判断方法(1)定义法:(2)等价法:将命题转化为另一个等价的又便于判断真假的命题(3)逆否法:这是等价法的一种特殊情况若綈p綈q,则p是q的必要条件,q是p的充分条件;若綈p綈q,且綈q 綈p,则p是q的必要不充分条件;若綈p綈q,则p与q互为充要条件;若綈p 綈q,且綈q 綈p,则p是q的既不充分也不必要条件(4)集合法:写出集合Ax|p(x)及Bx|q(x),利用集合之间的包

5、含关系加以判断用集合法判断时,要尽可能用图示、数轴、直角坐标平面等几何方法,图形形象、直观,能简化解题过程,降低思维难度再练一题1已知如下四个命题中:若aR,则“a2”是“(a1)(a2)0”的充分不必要条件;对于实数a,b,c,“ab”是“ac2bc2”的充分不必要条件;直线l1:axy3,l2:xbyc0,则“ab1”是“l1l2”的必要不充分条件;“m2或m6”是“yx2mxm3有两个不同零点”的充要条件其中正确的结论是_【解析】中,当a2时,有(a1)(a2)0;但当(a1)(a2)0时,a1或a2,不一定有a2.“a2”是“(a1)(a2)0”的充分不必要条件,正确abac2bc2(

6、c0),但ac2bc2ab.“ab”是“ac2bc2”的必要不充分条件,错中,ab1且ac3时,l1与l2重合,但l1l2,即ab1,“ab1”是“l1l2”的必要不充分条件,正确中,yx2mxm3有两个不同零点m24(m3)0m2或m6.是充要条件,正确【答案】充分条件、必要条件、充要条件的应用已知p:2,q:x22x1m20(m0),若p是q的充分不必要条件,求实数m的取值范围【精彩点拨】先解出两个不等式,由p是q的充分不必要条件可得pq,qp.从解集的角度出发,p对应的集合要真包含于q对应的集合,从而建立关于m的不等式组,解出m的范围【自主解答】设A,Bx|x22x1m20,则AB.解不

7、等式22x10,解不等式x22x1m201mx1m(m0),pq且qp,故AB,则或m9.1利用充分、必要条件求参数的取值范围问题,常利用集合法求解,即先化简集合Ax|p(x)和Bx|q(x),然后根据p与q的关系(充分、必要、充要条件),得出集合A与B的包含关系,进而得到相关不等式组(也可借助数轴),求出参数的取值范围2判断p是q的什么条件,若直接判断困难,还可以用等价命题来判断,有时也可通过举反例否定充分性或必要性再练一题2已知p:2x23x20,q:x22(a1)xa(a2)0,若p是q的充分不必要条件,求实数a的取值范围【解】令Mx|2x23x20x|(2x1)(x2)0,Nx|x22

8、(a1)xa(a2)0x|(xa)x(a2)0x|xa2或xa,由已知pq且q/p,得MN.或a2或0.探究2充要条件的证明与探求应注意哪些问题?【提示】(1)充要条件的证明分充分性和必要性的证明在证明时要注意两种叙述方式的区别:p是q的充要条件,则由pq证的是充分性,由qp证的是必要性;p的充要条件是q,则由pq证的是必要性,由qp证的是充分性(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件已知x,y都是非零实数,且xy,求证:0.【精彩点拨】依题意,分别证明充分性和必要性【自主解答】必要性:由,得0,即y,得yx0.充分性:由x

9、y0及xy,得,即.综上所述,0.1证明p是q的充要条件,既要证明命题“pq”为真,又要证明“qp”为真,前者证明的是充分性,后者证明的是必要性2证明充要条件,即说明原命题和逆命题都成立,要注意“p是q的充要条件”与“p的充要条件是q”这两种说法的差异,分清哪个是条件,哪个是结论再练一题3求证:关于x的方程ax2bxc0有一个根是1的充要条件是abc0.【证明】假设p:方程ax2bxc0有一个根是1,q:abc0.(1)证明pq,即证明必要性x1是方程ax2bxc0的根,a12b1c0,即abc0.(2)证明qp,即证明充分性由abc0,得cab.ax2bxc0,ax2bxab0,即a(x21

10、)b(x1)0.故(x1)(axab)0.x1是方程的一个根故方程ax2bxc0有一个根是1的充要条件是abc0.构建体系1“|x|y|”是“xy”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【解析】若x1,y1,则|x|y|,但xy;若xy,则|x|y|.【答案】B2已知a,b是实数,则“a0且b0”是“ab0且ab0”的() 【导学号:】A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【解析】对于“a0且b0”可以推出“ab0且ab0”,反之也是成立的【答案】C3“”是“cos ”的_条件【解析】当时,必有cos ,但当cos 时,不一定有.例

11、如还可取,因此“”是“cos ”的充分不必要条件【答案】充分不必要4若“xm”是“(x1)(x2)0”的充分不必要条件,则m的取值范围是_【解析】由(x1)(x2)0可得x2或x1,由已知条件,知x|xmx|x2或x1,m1.【答案】(,15判断下列各题中p是q的什么条件?(1)在ABC中,p:AB,q:BCAC;(2)p:x1,q:x21;(3)p:(a2)(a3)0,q:a3;(4)p:ab,q:B,则BCAC;反之,若BCAC,则AB.因此,p是q的充要条件(2)由x1可以推出x21;由x21得x1,不一定有x1.因此p是q的充分不必要条件(3)由(a2)(a3)0可以推出a2或a3,不

12、一定有a3;由a3可以得出(a2)(a3)0.因此p是q的必要不充分条件(4)由于ab,当b1;当b0时,1,故若ab,不一定有0,b0,1,可以推出ab;当a0,b0,b.因此p是q的既不充分也不必要条件我还有这些不足:(1)_(2)_我的课下提升方案:(1)_(2)_学业分层测评(建议用时:45分钟)学业达标一、选择题1已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【解析】A1,a,B1,2,3,AB,aB且a1,a2或3,“a3”是“AB”的充分不必要条件【答案】A2已知命题甲:“a,b,c成等差数列”,命题

13、乙:“2”,则命题甲是命题乙的()A必要不充分条件B充分不必要条件C充要条件D既不充分也不必要条件【解析】若2,则ac2b,由此可得a,b,c成等差数列;当a,b,c成等差数列时,可得ac2b,但不一定得出2,如a1,b0,c1.所以命题甲是命题乙的必要不充分条件【答案】A3设R,则“0”是“f(x)cos(x)(xR)为偶函数”的() 【导学号:】A充分不必要条件B必要不充分条件 C充要条件 D既不充分也不必要条件【解析】若0,则f(x)cos(x)cos x为偶函数,充分性成立;反之,若f(x)cos(x)为偶函数,则k(kZ),必要性不成立,故选A.【答案】A4“a1”是“函数f(x)a

14、x22x1只有一个零点”的()A充要条件 B充分不必要条件C必要不充分条件 D既不充分也不必要条件【解析】当a1时,函数f(x)ax22x1x22x1只有一个零点1;但若函数f(x)ax22x1只有一个零点,则a1或a0.所以“a1”是“函数f(x)ax22x1只有一个零点”的充分不必要条件,故选B.【答案】B5已知函数f(x)xbcos x,其中b为常数,那么“b0”是“f(x)为奇函数”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【解析】当b0时,f(x)x为奇函数;当f(x)为奇函数时,f(x)f(x),xbcos xxbcos x,从而2bcos x0,b0.

15、【答案】C二、填空题6“b2ac”是“a,b,c成等比数列”的_条件【解析】“b2ac”“a,b,c成等比数列”,如b2ac0;而“a,b,c成等比数列”“b2ac”【答案】必要不充分7“a1”是“l1:xay60与l2:(3a)x2(a1)y60平行”的_条件【解析】若直线l1:xay60与l2:(3a)x2(a1)y60平行,则需满足12(a1)a(3a)0,化简整理得a2a20,解得a1或a2,经验证得当a1时,两直线平行,当a2时,两直线重合,故“a1”是“l1:xay60与l2:(3a)x2(a1)y60平行”的充要条件【答案】充要8在下列各项中选择一项填空:充分不必要条件;必要不充

16、分条件;充要条件;既不充分也不必要条件(1)集合A1,p,2,B2,3,则“p3”是“ABB”的_;(2)“a1”是“函数f(x)|2xa|在区间上是增函数”的_【解析】(1)当p3时,A1,2,3,此时ABB;若ABB,则必有p3.因此“p3”是“ABB”的充要条件(2)当a1时,f(x)|2xa|2x1|在上是增函数;但由f(x)|2xa|在区间上是增函数不能得到a1,如当a0时,函数f(x)|2xa|2x|在区间上是增函数因此“a1”是“函数f(x)|2xa|在区间上是增函数”的充分不必要条件【答案】(1)(2)三、解答题9下列各题中,p是q的什么条件,q是p的什么条件,并说明理由(1)

17、p:|x|y|,q:xy;(2)在ABC,p:sin A,q:A.【解】(1)因为|x|y|xy或xy,但xy|x|y|,所以p是q的必要不充分条件,q是p的充分不必要条件(2)因为A(0,)时,sin A(0,1,且A时,ysin A单调递增,A时,ysin A单调递减,所以sin AA,但Asin A.所以p是q的充分不必要条件,q是p的必要不充分条件10设a,b,c分别是ABC的三个内角A、B、C所对的边,证明:“a2b(bc)”是“A2B”的充要条件【证明】充分性:由a2b(bc)b2c22bccos A可得12cos A.即sin B2sin Bcos Asin(AB)化简得sin

18、Bsin(AB)由于sin B0且在三角形中,故BAB,即A2B.必要性:若A2B,则ABB,sin(AB)sin B,sin(AB)sin Acos Bcos Asin B,sin(AB)sin Acos Bcos AsinBsin(AB)sin B(12cos A)A,B,C为ABC的内角,sin(AB)sin C,即sin Csin B(12cos A)12cos A1,即.化简得a2b(bc)“a2b(bc)”是“A2B”的充要条件能力提升1如果A是B的必要不充分条件,B是C的充要条件,D是C的充分不必要条件,那么A是D的()A必要不充分条件 B充分不必要条件C充要条件 D既不充分也不必要条件【解析】由条件,知DCBA,即DA,但A D,故选A.【答案】A2设有如下命题:甲:两相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论