利用角平分线构造全等三角形.ppt_第1页
利用角平分线构造全等三角形.ppt_第2页
利用角平分线构造全等三角形.ppt_第3页
利用角平分线构造全等三角形.ppt_第4页
利用角平分线构造全等三角形.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、利用三角形的角平分线构造全等三角形,映山中学 汪强,如何利用三角形的中线来构造全等三角形?,复习:,可以利用倍长中线法,即把中线延长一倍,来构造全等三角形。,如图,若AD为ABC的中线,,必有结论:,A,B,C,D,E,1,2,延长AD到E,使DE=AD,连结BE(也可连结CE)。,ABDECD,,1=E,,B=2,,EC=AB,CEAB。,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,如何利用三角形的角平分线来构造全等三角形?,问题:,如图,在ABC中,AD平分BAC。,方法一:,A,B,C,D,E,必有结论:,在AB上截取AE=AC,连结DE。,ADEADC。,ED=CD

2、,,3,*,2,1,AED=C,,ADE=ADC。,方法二:,A,B,C,D,F,延长AC到F,使AF=AB,连结DF。,必有结论:,ABDAFD。,BD=FD,,如何利用三角形的角平分线来构造全等三角形?,问题:,3,*,2,1,如图,在ABC中,AD平分BAC。,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,B=F,,ADB=ADF。,如何利用三角形的角平分线来构造全等三角形?,问题:,A,B,C,D,M,N,方法三:,作DMAB于M,DNAC于N。,必有结论:,AMDAND。,DM=DN,,3,*,2,1,如图,在ABC中,AD平分BAC。,可以利用角平分线所在直线作对

3、称轴,翻折三角形来构造全等三角形。,AM=AN,,ADM=AND。,(还可以用“角平分线上的点到角的两边距离相等”来证DM=DN),证明:,例题,已知:如图,在四边形ABCD中,BD是ABC的角平分线,AD=CD,求证:A+C=180,D,A,B,C,E,在BC上截取BE,使BE=AB,连结DE。, BD是ABC的角平分线(已知) 1=2(角平分线定义) 在ABD和EBD中 AB=EB(已知) 1=2(已证) BD=BD(公共边) ABDEBD(S.A.S),1,2,4,3, 3+ 4180 (平角定义), A3(已证) A+ C180 (等量代换),3,2,1,*, A3(全等三角形的对应角

4、相等), AD=CD(已知),AD=DE(已证) DE=DC(等量代换),4=C(等边对等角),AD=DE(全等三角形的对应边相等),证明:,例题,已知:如图,在四边形ABCD中,BD是ABC的角平分线,AD=CD,求证:A+C=180,D,A,B,C,F,延长BA到F,使BF=BC,连结DF。, BD是ABC的角平分线(已知) 1=2(角平分线定义) 在BFD和BCD中 BF=BC(已知) 1=2(已证) BD=BD(公共边) BFDBCD(S.A.S),1,2,4,3, FC(已证)4=C(等量代换),3,2,1,*, FC(全等三角形的对应角相等), AD=CD(已知),DF=DC(已证

5、) DF=AD(等量代换),4=F(等边对等角), 3+ 4180 (平角定义) A+ C180 (等量代换),DF=DC(全等三角形的对应边相等),证明:,例题,已知:如图,在四边形ABCD中,BD是ABC的角平分线,AD=CD,求证:A+C=180,D,A,B,C,M,作DMBC于M,DNBA交BA的延长线于N。, BD是ABC的角平分线(已知) 1=2(角平分线定义) DNBA,DMBC(已知) N=DMB=90(垂直的定义) 在NBD和MBD中 N=DMB (已证) 1=2(已证) BD=BD(公共边) NBDMBD(A.A.S),1,2, 4=C(全等三角形的对应角相等),N,4,3

6、,3,2,1,*, ND=MD(全等三角形的对应边相等), DNBA,DMBC(已知) NAD和MCD是Rt 在RtNAD和RtMCD中 ND=MD (已证) AD=CD(已知)RtNADRtMCD(H.L), 3+ 4180(平角定义), A3(已证) A+ C180(等量代换),证明:,例1,已知:如图,在四边形ABCD中,BD是ABC的角平分线,AD=CD,求证:A+C=180,D,A,B,C,M,作DMBC于M,DNBA交BA的延长线于N。,1,2,N,4,3,3,2,1,*, BD是ABC的角平分线(已知) DNBA,DMBC(已知) ND=MD(角平分线上的点到这 个角的两边距离相

7、等), 4=C (全等三角形的对应角相等), DNBA,DMBC(已知) NAD和MCD是Rt 在RtNAD和RtMCD中 ND=MD (已证) AD=CD(已知)RtNADRtMCD(H.L), 3+ 4180(平角定义) A3(已证) A+ C180(等量代换),练习,如图,已知ABC中,AD是BAC的角平分线,AB=AC+CD,求证:C=2B,A,B,C,D,E,1,2,2,1,证明:,在AB上截取AE,使AE=AC,连结DE。, AD是BAC的角平分线(已知) 1=2(角平分线定义) 在AED和ACD中 AE=AC(已知) 1=2(已证) AD=AD(公共边) AEDACD(S.A.S

8、),3,B=4(等边对等角),4,*, C3(全等三角形的对应角相等),又 AB=AC+CD=AE+EB(已知) EB=DC=ED(等量代换), 3= B+4= 2B(三角形的一个外角等于和它不相邻的两个内角和) C=2B(等量代换),ED=CD(全等三角形的对应边相等),练习,如图,已知ABC中,AD是BAC的角平分线,AB=AC+CD,求证:C=2B,A,B,C,D,F,1,2,证明:,延长AC到F,使CF=CD,连结DF。, AD是BAC的角平分线(已知) 1=2(角平分线定义) AB=AC+CD,CF=CD(已知) AB=AC+CF=AF(等量代换), ACB= 2F(三角形的一个外角

9、等于和它不相邻的两个内角和) ACB=2B(等量代换),3,2,1,*,在ABD和AFD中 AB=AF(已证) 1=2(已证) AD=AD(公共边) ABDAFD(S.A.S), FB(全等三角形的对应角相等), CF=CD(已知) B=3(等边对等角),如何利用三角形的角平分线来构造全等三角形?,小结:,(3)作DMAB于M,DNAC于N。,(1)在AB上截取AE=AC,连结DE。,(2)延长AC到F,使AF=AB,连结DF。,A,B,C,D,E,F,M,N,必有结论:ADEADC。,必有结论:ABDAFD。,必有结论:AMDAND。,可以利用角平分线所在直线作对称轴,翻折三角形来构造全等三角形。,如图,在ABC中,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论