




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、17.4 反比例函数,第17章 函数及其图象,1.反比例函数,1. 理解并掌握反比例函数的概念. (重点) 2. 从实际问题中抽象出反比例函数的模型,能根据已知 条件确定反比例函数的解析式. (重点、难点),学习目标,?,?,导入新课,情境引入,新学期伊始,小明想买一些笔记本为以后的学习做准备. 妈妈给了小明 30 元钱,小明可以如何选择笔记本的价钱和数量呢?,通过填表,你发现 x,y 之间具有怎样的关系?你还能举出这样的例子吗?,20,15,12,10,6,4,?,讲授新课,下列问题中,变量间具有函数关系吗?如果有,请写出它们的解析式.,合作探究,(1) 京沪线铁路全程为1463 km,某次
2、列车的平均速 度v (单位:km/h) 随此次列车的全程运行时间 t (单位:h) 的变化而变化;,(2) 某住宅小区要种植一块面积为 1000 m2 的矩形草 坪,草坪的长 y (单位:m) 随宽 x (单位:m)的 变化而变化;,(3) 已知北京市的总面积为1.641104 km2 ,人均占 有面积 S (km2/人) 随全市总人口 n (单位:人) 的 变化而变化.,观察以上三个解析式,你觉得它们有什么共同特点?,问题:,都具有 的形式,其中 是常数,分式,分子,(k为常数,k 0) 的函数, 叫做反比例函数,其中 x 是自变量,y 是函数.,一般地,形如,反比例函数 (k0) 的自变量
3、 x 的取值范围是什么?,思考:,因为 x 作为分母,不能等于零,因此自变量 x 的取值范围是所有非零实数.,但实际问题中,应根据具体情况来确定反比例函数自变量的取值范围.,例如,在前面得到的第一个解析式 中,t 的取值范围是 t0,且当 t 取每一个确定的 值时,v 都有唯一确定的值与其对应.,反比例函数除了可以用 (k 0) 的形式表示,还有没有其他表达方式?,想一想:,反比例函数的三种表达方式:(注意 k 0),下列函数是不是反比例函数?若是,请指出 k 的值.,是,k = 3,不是,不是,不是,练一练,是,,解:因为 是反比例函数,解得 k =2.,所以该反比例函数的解析式为,方法总结
4、:已知某个函数为反比例函数,只需要根据反比例函数的定义列出方程(组)求解即可.,例1 若函数 是反比例函数,求 k的值,并写出该反比例函数的解析式.,1. 已知函数 是反比例函数,则 k 必须满足 .,2. 当m= 时, 是反比例函数.,k2 且 k1,1,练一练,例2 已知 y 是 x 的反比例函数,并且当 x=2时,y=6. (1) 写出 y 关于 x 的函数解析式;,解:设 . 因为当 x=2时,y=6,所以有,解得 k =12.,因此,(2) 当 x=4 时,求 y 的值.,解:把 x=4 代入 ,得,方法总结:用待定系数法求反比例函数解析式的一般步骤:设出含有待定系数的反比例函数解析
5、式, 将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;解方程,求出待定系数; 写出反比例函数解析式.,练一练,已知变量 y 与 x 成反比例,且当 x=3时,y=4. (1) 写出 y 关于 x 的函数解析式; (2) 当 y=6 时,求 x 的值.,解:(1) 设 . 因为当 x=3时,y=4,所以有,解得 k =12.,因此,(2) 把 y=6 代入 ,得,解得 x =2.,例3 人的视觉机能受运动速度的影响很大,行驶中司机在驾驶室内观察前方物体是动态的,车速增加,视野变窄. 当车速为 50km/h 时,视野为 80 度,如果视野 f (度) 是车速 v (km/h)
6、 的反比例函数,求 f 关于 v 的函数解析式,并计算当车速为100km/h 时视野的度数.,当 v=100 时,f =40. 所以当车速为100km/h 时视野为40度.,解:设 . 由题意知,当 v =50时,f =80,所以,解得 k =4000.,因此,A. B. C. D.,1. 下列函数中,y是x的反比例函数的是 ( ),A,当堂练习,2. 生活中有许多反比例函数的例子,在下面的实例中, x 和 y 成反比例函数关系的有 ( ), x人共饮水10 kg,平均每人饮水 y kg;底面半径为 x m,高为 y m的圆柱形水桶的体积为10 m3;用铁丝做一个圆,铁丝的长为 x cm,做成
7、圆的半径为 y cm;在水龙头前放满一桶水,出水的速度为 x,放满一桶水的时间 y A. 1个 B. 2个 C. 3个 D. 4个,B,3. 填空 (1) 若 是反比例函数,则 m 的取值范围 是 . (2) 若 是反比例函数,则m的取值范 围是 . (3) 若 是反比例函数,则m的取值范围 是 .,m 1,m 0 且 m 2,m = 1,4. 已知 y 与 x+1 成反比例,并且当 x = 3 时,y = 4.,(1) 写出 y 关于 x 的函数解析式; (2) 当 x = 7 时,求 y 的值,解:(1) 设 ,因为当 x = 3 时,y =4 ,,所以有 ,解得 k =16,因此 .,(
8、2) 当 x = 7 时,,5. 小明家离学校 1000 m,每天他往返于两地之间,有 时步行,有时骑车假设小明每天上学时的平均速 度为 v ( m/min ),所用的时间为 t ( min ) (1) 求变量 v 和 t 之间的函数关系式;,解: (t0),(2) 小明星期二步行上学用了 25 min,星期三骑自行 车上学用了 8 min,那么他星期三上学时的平均 速度比星期二快多少?,1254085 ( m/min ) 答:他星期三上学时的平均速度比星期二快 85 m/min.,解:当 t25 时, ;,当 t8 时, .,能力提升:,6. 已知 y = y1+y2,y1与 (x1) 成正比例,y2 与 (x + 1) 成反比例,当 x = 0 时,y =3;当 x =1 时,y = 1, 求:,(1) y 关于 x 的关系式;,解:设 y1 = k1(x1) (k10), (k20),,则 ., x = 0 时,y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准化的股权转让合同样本
- 2025商业贷款合同范本
- 2025标准版技术咨询服务合同
- 青少年活动场所的安全监管计划
- 年度工作计划与风险评估的结合策略
- 2025市场营销专员劳动合同范本
- 年度项目评审与优化建议计划
- 管理者的心理素质与职业发展计划
- 学期教学工作计划布置总结
- 环保产业绿色制造技术与设备研发计划
- 2025陕西核工业工程勘察院有限公司招聘(21人)笔试参考题库附带答案详解
- 2025年山东、湖北部分重点中学高中毕业班第二次模拟考试数学试题含解析
- 8.2 诚信经营 依法纳税课件-高中政治统编版选择性必修二法律与生活
- 2025年超高功率大吨位电弧炉项目发展计划
- DB32T 5076-2025 奶牛规模化养殖设施设备配置技术规范
- 电流与电压和电阻实验报告单
- 《空中领航学》8.5 精密进近程序的五边进近
- WS-T 428-2013 成人体重判定
- 资料员岗位季度绩效考核表
- 铺轨基地临建方案
- 《环境规划与管理》课件[1]
评论
0/150
提交评论