版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、18.2.3 正方形的判定,正方形,2.矩形,有一组邻边相等,3.菱形,有一个角是直角,1.平行四边形,有一组邻边相等,且有一个角是直角,常用判定方法,正方形的判定方法:,2、有一组邻边相等的矩形是正方形,3、有一个角是直角的菱形是正方形,1、一组邻边相等且有一个角是直角的平行四边形是正方形,(对角线相等且互相垂直平分的四边形是正方形),判断四边形是正方形的方法,、先说明它是矩形,再说明这个矩形有一组邻边相等,、先说明它是菱形,再说明这个菱形有一个角是直角,、先说明它是平行四边形,再说明有一组邻边相等,并且一个角是直角。,(对角线平分且垂直又相等的四边形是正方形),(邻边相等的矩形是正方形),
2、(有一个角是直角的菱形是正方形),正方形具有而矩形不一定具有的性质是( ) A、四个角相等. B、对角线互相垂直平分. C、对角互补. D、对角线相等.,选一选,2.正方形具有而菱形不一定具有的性质( ) A、四条边相等. B、对角线互相垂直平分. C、对角线平分一组对角. D、对角线相等.,B,D,巩固练习:判断下列命题是否正确,不是正方形的补充什么条件能让它成为正方形?,四个角都相等的四边形是正方形; ( ) 四条边都相等的四边形是正方形; ( ) 对角线相等的菱形是正方形; ( ) 对角线互相垂直的矩形是正方形; ( ) 对角线垂直且相等的四边形是正方形; ( ) 四边相等,有一个角是直
3、角的四边形 是正方形. ( ),2.已知:如图,ABC中.ABC=90,BD是角平分线,DEAB,DFBC,垂足分别是E、F.,试说明:四边形DEBF是正方形.,解: DFBC,DEAB, DEB= DFB=90,又 ABC=90,四边形DEBF是矩形, BD平分ABC, DFBC , DEAB, DE= DF,四边形DEBF是正方形,例:正方形ABCD中DAF=25,AF交对角线BD于E,交CD于F,求 BEC的度数.,A,B,C,D,E,F,25,30,例2如图(3),正方形ABCD中,AC、BD相交于O,,分析:要证明BMCN,,MNAB且MN分别交OA、OB于M、N,,求证:BMCN。
4、,AB=BC,1=2=45 ,AM=BN,ABMBCN,正方形ABCD,OM=ON,OMNONM45,活动与探索,如图正方形ABCD的边长为1,E、F分别为BC、CD上的点,若BE+DF=EF, 求证:EAF=450,8、如图,正方形ABCD的边长为8, M在DC上,且DM=2,N是AC上一个动点,求DN+MN的最小值。,A,B,C,D,M,N,8、如图,正方形ABCD的边长为8, M在DC上,且DM=2,N是AC上一个动点,求DN+MN的最小值。,A,B,C,D,M,N,6、已知:如图矩形ABCD,对角线AC、BD相交于点O,AE平分BAD交BC于点E,连接OE,若EAO=150,求BOE的度数。,10、如图B、C、E是同一直线上的三个点,四边形ABCD与CEFG是正方形,连接BG、DE,(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届新高考历史冲刺精准复习影响世界的工业革命
- 电场 电场强度 高一下学期物理粤教版(2019)必修第三册
- 硕士研究报告模板
- 提升学效的习惯培养模板
- 助产技术-胎头旋转术
- 临床输血过程(临床输血检验课件)
- 2022年行政主管年度个人工作总结
- 第十八章第2节电能 电功说课稿 -2023-2024学年人教版九年级物理上学期
- 2022年干部选拔任用总结范本
- 第6课 互联网应用中的数据 说课稿 2023-2024学年 浙教版(2023)信息科技八年级上册
- 《春节的文化与习俗》课件
- 手机棋牌平台网络游戏商业计划书
- 学校体育与社区体育融合发展的研究
- 医疗机构高警示药品风险管理规范(2023版)
- 一年级体质健康数据
- 八年级物理(上)期中考试分析与教学反思
- 国家开放大学《财政与金融(农)》形考任务1-4参考答案
- 2023银行网点年度工作总结
- 工厂反骚扰虐待强迫歧视政策
- 计算机教室(微机室)学生上机使用记录
- FAI首件检验报告
评论
0/150
提交评论