下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、24.2 圆的基本性质第2课时 垂径分弦1理解并掌握垂径定理及其推论,并能应用其解决一些简单的计算和证明问题(重点,难点);2认识垂径定理及其推论在实际问题中的应用,会用添加辅助线的方法解决实际问题(难点)一、情境导入你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605618年)由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥你知道主桥拱的圆弧所在圆的半径是多少吗?二、合作探究探究点一:
2、垂径定理及应用【类型一】 利用垂径定理求线段长 如图所示,O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD6cm,则直径AB的长是()A2cm B3cmC4cm D4cm解析:直径ABDC,CD6cm,DP3cm.连接OD,P是OB的中点,设OP为x,则OD为2x,在RtDOP中,根据勾股定理列方程32x2(2x)2,解得x.OD2cm,AB4cm.故选D.方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题变式训练:见学练优本课时练习“课堂达标训练”第2题【类型二】 垂径定理的实际应用 如图,一条公路的转弯处是一段圆弧(图中的),点O是这
3、段弧的圆心,C是上一点,OCAB,垂足为D,AB300m,CD50m,则这段弯路的半径是_m.解析:本题考查垂径定理的应用,OCAB,AB300m,AD150m.设半径为R,在RtADO中,根据勾股定理可列方程R2(R50)21502,解得R250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答变式训练:见学练优本课时练习“课堂达标训练”第7题【类型三】 动点问题 如图,O的直径为10cm,弦AB8cm,P是弦AB上的一个动点,求OP的长度范围解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OPAB时,OP最短,利用垂径定理
4、及勾股定理可求得此时OP的长解:作直径MN弦AB,交AB于点D,由垂径定理,得ADDBAB4cm.又O的直径为10cm,连接OA,OA5cm.在RtAOD中,由勾股定理,得OD3cm.垂线段最短,半径最长,OP的长度范围是3cmOP5cm方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解容易出错的地方是不能确定最值时的情况变式训练:见学练优本课时练习“课后巩固提升”第5题探究点二:垂径定理的推论的应用【类型一】 利用垂径定理的推论求角 如图所示,O的弦AB、AC的夹角为50,M、N分别是、的中点,则MON的度数是()A100 B110 C120 D130解析:已知M、N分别
5、是、的中点,由“平分弧的直径垂直平分弧所对的弦”得OMAB、ONAC,所以AEOAFO90,而BAC50,由四边形内角和定理得MON360AEOAFOBAC360909050130.故选D.变式训练:见学练优本课时练习“课后巩固提升”第4题【类型二】 利用垂径定理的推论求边 如图,O的直径CD过弦AB的中点E,且CE2,DE8,则AB的长为()A9 B8 C6 D4解析:CE2,DE8,CD10,OBOC5,OE523.直径CD过弦AB的中点E,CDAB,AEBE.在RtOBE中,OE3,OB5,BE4,AB2BE8.故选B.方法总结:垂径定理的推论虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手变式训练:见学练优本课时练习“课后巩固提升”第7题三、板书设计1垂径定理垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧2垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地铁站点连接盾构机租赁合同
- 农村林地租赁合同:生态农业研究
- 射箭比赛观众电梯租赁合同
- 校园篮球联赛赛程安排手册
- 网络建设服务承诺模板
- 网络安全遵纪守法经营承诺书
- 影楼后期制作管理品质控制
- 水上酒店防水工程合同
- 应急维修工程师聘用协议
- 团队建设摩托车租赁合约
- 山东省日照地区2024-2025学年八年级上学期期中考试数学试题(含答案)
- 2024年资格考试-CPSM认证考试近5年真题附答案
- 混料机的安全操作规程有哪些(8篇)
- 期中 (试题) -2024-2025学年译林版(三起)英语六年级上册
- 期中测试卷-2024-2025学年统编版语文一年级上册
- 2024秋期国家开放大学《财务报表分析》一平台在线形考(作业一至五)试题及答案
- 计算机应用基础
- 第五单元 倍的认识(单元测试)-2024-2025学年三年级上册数学人教版
- 人教版(2024)七年级上册数学第4章 整式的加减运算 达标测试卷(含答案)
- AI在药物研发中的应用
- 五年级主题班会 家长会 课件(共28张PPT)
评论
0/150
提交评论